This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319780 #23 Dec 25 2018 17:28:53 %S A319780 2,2,1,0,2,1,0,2,1,2,0,1,0,0,2,0,0,1,2,0,1,0,0,1,0,0,1,2,2,2,2,2,1,2, %T A319780 2,1,2,2,2,2,2,2,2,2,1,2,2,2,2,2,1,2,2,1,2,2,2,2,2,1,2,2,2,2,2,2,2,2, %U A319780 2,2,2,1,2,2,2,2,2,1,2,2,1,0,2,1,0,2,1 %N A319780 a(n) is the period of cyclic structures that appear in the 3-state (0,1,2) 1D cellular automaton started from a single cell at state 1 with rule n. %C A319780 The length of the sequence is equal to 3^3^3 = 7625597484987. %e A319780 1D cellular automaton with rule=1 gives the following generations: %e A319780 1 ..........1.......... <------ start %e A319780 2 111111111...111111111 <------ end %e A319780 3 ..........1.......... %e A319780 4 111111111...111111111 %e A319780 5 ..........1.......... %e A319780 6 111111111...111111111 %e A319780 7 ..........1.......... %e A319780 The period is 2, thus a(1) = 2. %e A319780 For rule=150: %e A319780 1 ..........1..... <------ start %e A319780 2 .........22..... <------ end %e A319780 3 ........1....... %e A319780 4 .......22....... %e A319780 5 ......1......... %e A319780 6 .....22......... %e A319780 7 ....1........... %e A319780 The period is 2, thus a(150) = 2. %e A319780 For rule=100000000797: %e A319780 1 .........1....... <------ start %e A319780 2 ........2.2...... %e A319780 3 ........111...... %e A319780 4 .......2.112..... %e A319780 5 .......12........ %e A319780 6 ......21......... %e A319780 7 ........2........ <------ end %e A319780 8 ........1........ %e A319780 9 .......2.2....... %e A319780 10 .......111....... %e A319780 11 ......2.112...... %e A319780 12 ......12......... %e A319780 13 .....21.......... %e A319780 14 .......2......... %e A319780 15 .......1......... %e A319780 The period is 7, thus a(100000000797) = 7. %e A319780 a(10032729) = 12. %e A319780 a(10096524) = 16. %t A319780 Table[ %t A319780 Length[ %t A319780 Last[ %t A319780 FindTransientRepeat[(Internal`DeleteTrailingZeros[ %t A319780 Reverse[Internal`DeleteTrailingZeros[#]]]) & /@ %t A319780 CellularAutomaton[{i, 3}, {ConstantArray[0, 25], {1}, ConstantArray[0, 25]} // Flatten, 50], 2]]], %t A319780 {i, 1, 1000} %t A319780 ] %Y A319780 Cf. A180001. %K A319780 nonn,fini %O A319780 1,1 %A A319780 _Philipp O. Tsvetkov_, Sep 27 2018