cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319781 Number of multiset partitions of integer partitions of n with empty intersection. Number of relatively prime factorizations of Heinz numbers of integer partitions of n.

This page as a plain text file.
%I A319781 #5 Sep 28 2018 15:24:05
%S A319781 1,0,0,1,3,9,21,48,103,214,436,863,1689
%N A319781 Number of multiset partitions of integer partitions of n with empty intersection. Number of relatively prime factorizations of Heinz numbers of integer partitions of n.
%C A319781 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%e A319781 The a(3) = 1 through a(5) = 9 multiset partitions:
%e A319781 3: {{1},{2}}
%e A319781 4: {{1},{3}}
%e A319781    {{2},{1,1}}
%e A319781    {{1},{1},{2}}
%e A319781 5: {{1},{4}}
%e A319781    {{2},{3}}
%e A319781    {{3},{1,1}}
%e A319781    {{1},{2,2}}
%e A319781    {{1},{1},{3}}
%e A319781    {{1},{2},{2}}
%e A319781    {{2},{1,1,1}}
%e A319781    {{1},{2},{1,1}}
%e A319781    {{1},{1},{1},{2}}
%Y A319781 Cf. A007716, A049311, A281116, A283877, A316980, A317752, A317755, A317757, A318715.
%Y A319781 Cf. A319775, A319779, A319778, A319783.
%K A319781 nonn,more
%O A319781 0,5
%A A319781 _Gus Wiseman_, Sep 27 2018