A319794 Number of ways to split a strict integer partition of n into consecutive subsequences with weakly decreasing sums.
1, 1, 1, 3, 3, 5, 9, 11, 15, 20, 31, 37, 52, 64, 85, 111, 141, 175, 225, 279, 346, 437, 532, 654, 802, 979, 1182, 1438, 1740, 2083, 2502, 2996, 3565, 4245, 5043, 5950, 7068, 8303, 9772, 11449, 13452, 15681, 18355, 21338, 24855, 28846, 33509, 38687, 44819, 51644
Offset: 0
Keywords
Examples
The a(6) = 9 split partitions: (6) (51) (5)(1) (42) (4)(2) (321) (32)(1) (3)(21) (3)(2)(1).
Programs
-
Mathematica
comps[q_]:=Table[Table[Take[q,{Total[Take[c,i-1]]+1,Total[Take[c,i]]}],{i,Length[c]}],{c,Join@@Permutations/@IntegerPartitions[Length[q]]}]; Table[Sum[Length[Select[comps[y],OrderedQ[Total/@#,GreaterEqual]&]],{y,Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,30}]