This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319810 #7 Sep 29 2018 01:50:00 %S A319810 1,2,2,3,2,5,2,5,4,6,2,11,2,8,7,11,2,17,2,18,9,15,2,32,5,22,12,34,2, %T A319810 54,2,49,16,51,10,94,2,77,23,112,2,152,2,148,47,165,2,258,7,247,52, %U A319810 286,2,400,17,402,78,439,2,657,2,594,131,711,24 %N A319810 Number of fully periodic integer partitions of n. %C A319810 An integer partition is fully periodic iff either it is a singleton or it is a periodic partition (meaning its multiplicities have a common divisor > 1) with fully periodic multiplicities. %e A319810 The a(12) = 11 fully periodic integer partitions: %e A319810 (12) %e A319810 (6,6) %e A319810 (4,4,4) %e A319810 (5,5,1,1) %e A319810 (4,4,2,2) %e A319810 (3,3,3,3) %e A319810 (3,3,3,1,1,1) %e A319810 (3,3,2,2,1,1) %e A319810 (2,2,2,2,2,2) %e A319810 (2,2,2,2,1,1,1,1) %e A319810 (1,1,1,1,1,1,1,1,1,1,1,1) %e A319810 Periodic partitions missing from this list are: %e A319810 (4,4,1,1,1,1) %e A319810 (3,3,1,1,1,1,1,1) %e A319810 (2,2,2,1,1,1,1,1,1) %e A319810 (2,2,1,1,1,1,1,1,1,1) %e A319810 The first non-uniform fully periodic partition is (4,4,3,3,2,2,2,2,1,1,1,1). %e A319810 The first periodic integer partition that is not fully periodic is (2,2,1,1,1,1). %t A319810 totperQ[m_]:=Or[Length[m]==1,And[GCD@@Length/@Split[Sort[m]]>1,totperQ[Sort[Length/@Split[Sort[m]]]]]]; %t A319810 Table[Length[Select[IntegerPartitions[n],totperQ]],{n,30}] %Y A319810 Cf. A000837, A018783, A047966, A098859, A100953, A305563, A319149, A319160, A319162, A319163, A319164, A319811. %K A319810 nonn %O A319810 1,2 %A A319810 _Gus Wiseman_, Sep 28 2018