cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319822 Number of solutions to x^2 + 2*y^2 + 5*z^2 + 5*w^2 = n.

This page as a plain text file.
%I A319822 #97 Jun 15 2019 10:32:59
%S A319822 1,2,2,4,2,4,12,8,18,14,4,28,12,24,32,0,34,20,14,28,4,32,44,40,28,10,
%T A319822 40,56,64,72,8,48,66,24,68,8,46,88,60,32,4,52,64,116,76,12,64,72,60,
%U A319822 82,26,72,104,104,88,8,112,56,136,140,8,136,96,72,98,16,72,132
%N A319822 Number of solutions to x^2 + 2*y^2 + 5*z^2 + 5*w^2 = n.
%C A319822 Ramanujan (1917) claimed that there are exactly 55 possible choice for a <= b <= c <= d such that a*x^2 + b*y^2 + c*z^2 + d*w^2 represents all natural numbers, but L. E. Dickson (1927) has pointed out that Ramanujan has overlooked the fact that (1, 2, 5, 5) does not represent 15. Consequently, there are only 54 forms. This sequence is related to the form (1, 2, 5, 5). As is proven, a(n) = 0 iff n = 15.
%C A319822 There are also many (a, b, c, d) other than this such that a*x^2 + b*y^2 + c*z^2 + d*w^2 represents all but finitely many natural numbers. For example, x^2 + y^2 + 5*z^2 + 5*w^2 represents all natural numbers except for 3 (cf. A236929); x^2 + y^2 + z^2 + d*w^2 (d == 2 (mod 4) or d = 9, 17, 25, 36, 68, 100 and some others) represents all natural numbers except for those of the form 4^i*(8*j + 7) and < d; x^2 + 2*y^2 + 6*z^2 + d*w^2 (d == 2 (mod 4) or d = 11, 19 and some others) represents all natural numbers except for those of the form 4^i*(8*j + 5) and < d.
%D A319822 J. H. Conway, Universal quadratic forms and the fifteen theorem, Contemporary Mathematics 272 (1999), 23-26.
%H A319822 Seiichi Manyama, <a href="/A319822/b319822.txt">Table of n, a(n) for n = 0..10000</a>
%H A319822 L. E. Dickson, <a href="https://doi.org/10.1090/S0002-9904-1927-04312-9">Integers represented by positive ternary quadratic forms</a>, Bulletin of the American Mathematical Society, 1927, 33(1):63-70.
%H A319822 H. D. Kloosterman, <a href="https://projecteuclid.org/euclid.acta/1487102066">On the representation of numbers in the form ax^2 + by^2 + cz^2 + dt^2</a>, Acta Mathematica, 1927, 49(3-4):407-464.
%H A319822 S. Ramanujan, <a href="http://ramanujan.sirinudi.org/Volumes/published/ram20.pdf">On the expression of a number in the form ax^2 + by^2 + cz^2 + du^2</a>, Proc. Camb. Phil. Soc. 19 (1917), 11-21.
%F A319822 a(n) = Sum_{k=0..floor(n/5)} A004018(k)*A033715(n-5*k).
%F A319822 G.f.: theta_3(q)*theta_3(q^2)*theta_3(q^5)^2, where theta_3() is the Jacobi theta function.
%e A319822 a(5) = 4 because 0^2 + 2*0^2 + 5*0^2 + 5*1^2 = 0^2 + 2*0^2 + 5*0^2 + 5*(-1)^2 = 0^2 + 2*0^2 + 5*1^2 + 5*0^2 = 0^2 + 2*0^2 + 5*(-1)^2 + 5*0^2 = 5 and these are the only four solutions to x^2 + 2*y^2 + 5*z^2 + 5*w^2 = 5.
%p A319822 JT := (k, n) -> JacobiTheta3(0, x^k)^n:
%p A319822 A319822List := proc(len) series(JT(1,1)*JT(2,1)*JT(5,2), x, len+1);
%p A319822 seq(coeff(%, x, j), j=0..len) end: A319822List(67); # _Peter Luschny_, Oct 01 2018
%t A319822 CoefficientList[EllipticTheta[3, 0, q] EllipticTheta[3, 0, q^2] EllipticTheta[ 3, 0, q^5]^2 + O[q]^100, q] (* _Jean-François Alcover_, Jun 15 2019 *)
%o A319822 (PARI) A004018(n) = if(n, 4*sumdiv(n,d,kronecker(-4,d)), 1);
%o A319822 A033715(n) = if(n, 2*sumdiv(n,d,kronecker(-2,d)), 1);
%o A319822 a(n) = my(i=0); for(k=0, n\5, i+=A004018(k)*A033715(n-5*k)); i
%o A319822 (PARI) N=99; q='q+O('q^N);
%o A319822 gf = (eta(q^2)*eta(q^4))^3*eta(q^10)^10/(eta(q)*eta(q^5)^2*eta(q^8)*eta(q^20)^2)^2;
%o A319822 Vec(gf) \\ _Altug Alkan_, Oct 01 2018
%o A319822 (Sage)
%o A319822 Q = DiagonalQuadraticForm(ZZ, [1, 2, 5, 5])
%o A319822 Q.theta_series(68).list() # _Peter Luschny_, Oct 01 2018
%Y A319822 Cf. A004018, A033715, A236922-A236933.
%Y A319822 From _Seiichi Manyama_, Oct 07 2018: (Start)
%Y A319822 54 possible choice:
%Y A319822   k   |   a, b, c,  d   | Number of solutions
%Y A319822 ------+-----------------+--------------------
%Y A319822     1 |   1, 1, 1,  1   | A000118
%Y A319822     2 |   1, 1, 1,  2   | A236928
%Y A319822     3 |   1, 1, 1,  3   | A236926
%Y A319822     4 |   1, 1, 1,  4   | A236923
%Y A319822     5 |   1, 1, 1,  5   | A236930
%Y A319822     6 |   1, 1, 1,  6   | A236931
%Y A319822     7 |   1, 1, 1,  7   | A236932
%Y A319822     8 |   1, 1, 2,  2   | A097057
%Y A319822     9 |   1, 1, 2,  3   | A320124
%Y A319822    10 |   1, 1, 2,  4   | A320125
%Y A319822    11 |   1, 1, 2,  5   | A320126
%Y A319822    12 |   1, 1, 2,  6   | A320127
%Y A319822    13 |   1, 1, 2,  7   | A320128
%Y A319822    14 |   1, 1, 2,  8   | A320130
%Y A319822    15 |   1, 1, 2,  9   | A320131
%Y A319822    16 |   1, 1, 2, 10   | A320132
%Y A319822    17 |   1, 1, 2, 11   | A320133
%Y A319822    18 |   1, 1, 2, 12   | A320134
%Y A319822    19 |   1, 1, 2, 13   | A320135
%Y A319822    20 |   1, 1, 2, 14   | A320136
%Y A319822    21 |   1, 1, 3,  3   | A034896
%Y A319822    22 |   1, 1, 3,  4   | A272364
%Y A319822    23 |   1, 1, 3,  5   | A320147
%Y A319822    24 |   1, 1, 3,  6   | A320148
%Y A319822    25 |   1, 2, 2,  2   | A320149
%Y A319822    26 |   1, 2, 2,  3   | A320150
%Y A319822    27 |   1, 2, 2,  4   | A236924
%Y A319822    28 |   1, 2, 2,  5   | A320151
%Y A319822    29 |   1, 2, 2,  6   | A320152
%Y A319822    30 |   1, 2, 2,  7   | A320153
%Y A319822    31 |   1, 2, 3,  3   | A320138
%Y A319822    32 |   1, 2, 3,  4   | A320139
%Y A319822    33 |   1, 2, 3,  5   | A320140
%Y A319822    34 |   1, 2, 3,  6   | A033712
%Y A319822    35 |   1, 2, 3,  7   | A320188
%Y A319822    36 |   1, 2, 3,  8   | A320189
%Y A319822    37 |   1, 2, 3,  9   | A320190
%Y A319822    38 |   1, 2, 3, 10   | A320191
%Y A319822    39 |   1, 2, 4,  4   | A320193
%Y A319822    40 |   1, 2, 4,  5   | A320194
%Y A319822    41 |   1, 2, 4,  6   | A320195
%Y A319822    42 |   1, 2, 4,  7   | A320196
%Y A319822    43 |   1, 2, 4,  8   | A033720
%Y A319822    44 |   1, 2, 4,  9   | A320197
%Y A319822    45 |   1, 2, 4, 10   | A320198
%Y A319822    46 |   1, 2, 4, 11   | A320199
%Y A319822    47 |   1, 2, 4, 12   | A320200
%Y A319822    48 |   1, 2, 4, 13   | A320201
%Y A319822    49 |   1, 2, 4, 14   | A320202
%Y A319822    50 |   1, 2, 5,  6   | A320163
%Y A319822    51 |   1, 2, 5,  7   | A320164
%Y A319822    52 |   1, 2, 5,  8   | A320165
%Y A319822    53 |   1, 2, 5,  9   | A320166
%Y A319822    54 |   1, 2, 5, 10   | A033722
%Y A319822 (End)
%K A319822 nonn
%O A319822 0,2
%A A319822 _Jianing Song_, Sep 28 2018