A319823 Primes p such that min(d(p-1), d(p+1)) is larger than the corresponding values of all previous primes, where d(n) is the number of divisors of n (A000005).
2, 3, 5, 7, 17, 19, 41, 197, 199, 449, 701, 881, 3079, 4159, 18089, 40699, 51679, 90271, 388961, 403649, 446081, 906751, 1276001, 12227489, 37487449, 53308529, 59522849, 109245401, 285258401, 459712639, 1381951999, 2560742911, 2969200961, 8505402751
Offset: 1
Keywords
References
- W. Sierpinski, 250 Problems in Elementary Number Theory, New York: American Elsevier, 1970, problem #104, pp. 9, 58-59.
Programs
-
Mathematica
s={}; f[p_] := Min[DivisorSigma[0,p-1], DivisorSigma[0,p+1]]; p=2; fm=0; Do[f1 = f[p]; If[f1>fm, AppendTo[s,p]; fm=f1]; p=NextPrime[p], {k, 1, 100}]; s
-
PARI
f(p)=min(numdiv(p-1),numdiv(p+1)); fm=0;forprime(p=1, 1000, f1=f(p); if(f1>fm, print1(p,", "); fm=f1))
Comments