cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319823 Primes p such that min(d(p-1), d(p+1)) is larger than the corresponding values of all previous primes, where d(n) is the number of divisors of n (A000005).

Original entry on oeis.org

2, 3, 5, 7, 17, 19, 41, 197, 199, 449, 701, 881, 3079, 4159, 18089, 40699, 51679, 90271, 388961, 403649, 446081, 906751, 1276001, 12227489, 37487449, 53308529, 59522849, 109245401, 285258401, 459712639, 1381951999, 2560742911, 2969200961, 8505402751
Offset: 1

Views

Author

Amiram Eldar, Sep 28 2018

Keywords

Comments

Problem 104 in Sierpinski's book is to prove that this sequence is infinite.
The corresponding values of min(d(p-1), d(p+1)) are 1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 16, 18, 20, 28, 32, 36, 40, 48, 50, 56, 64, 80, 96, 128, 144, 160, 168, 192, 216, 256, 288, 320, 336, 384, ...

References

  • W. Sierpinski, 250 Problems in Elementary Number Theory, New York: American Elsevier, 1970, problem #104, pp. 9, 58-59.

Crossrefs

Programs

  • Mathematica
    s={}; f[p_] := Min[DivisorSigma[0,p-1], DivisorSigma[0,p+1]]; p=2; fm=0; Do[f1 = f[p]; If[f1>fm, AppendTo[s,p]; fm=f1]; p=NextPrime[p], {k, 1, 100}]; s
  • PARI
    f(p)=min(numdiv(p-1),numdiv(p+1));
    fm=0;forprime(p=1, 1000, f1=f(p); if(f1>fm, print1(p,", "); fm=f1))