This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319826 #10 Feb 18 2023 08:08:54 %S A319826 0,1,2,3,4,1,5,1,6,1,7,1,8,1,2,9,10,1,11,1,1,1,12,1,13,1,2,1,14,1,15, %T A319826 1,1,1,1,3,16,1,2,1,17,1,18,1,2,1,19,1,20,1,2,1,21,1,1,1,1,1,22,1,23, %U A319826 1,1,3,4,1,24,1,2,1,25,1,26,1,1,1,1,1,27,1,28 %N A319826 GCD of the strict integer partition with FDH number n; GCD of the indices (in A050376) of Fermi-Dirac prime factors of n. %C A319826 Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH number of a strict integer partition (y_1, ..., y_k) is f(y_1) * ... * f(y_k). %H A319826 Antti Karttunen, <a href="/A319826/b319826.txt">Table of n, a(n) for n = 1..16384</a> %F A319826 For all n >= 1, a(A050376(n)) = n. - _Antti Karttunen_, Feb 18 2023 %e A319826 45 is the FDH number of (6,4), which has GCD 2, so a(45) = 2. %t A319826 nn=200; %t A319826 FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]]; %t A319826 FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList]; %t A319826 GCD@@@Table[Reverse[FDfactor[n]/.FDrules],{n,nn}] %o A319826 (PARI) A319826(n) = { my(i=1,g=0,x=A052331(n)); while(x,if(x%2,g = gcd(g,i)); x>>=1; i++); (g); }; \\ (Uses the program given in A052331) - _Antti Karttunen_, Feb 18 2023 %Y A319826 A left inverse of A050376. %Y A319826 Cf. A052331, A056239, A064547, A213925, A289508, A289509, A290103, A299755, A299757, A319825. %K A319826 nonn %O A319826 1,3 %A A319826 _Gus Wiseman_, Sep 28 2018 %E A319826 Secondary definition added by _Antti Karttunen_, Feb 18 2023