cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A319829 FDH numbers of strict integer partitions of odd numbers.

Original entry on oeis.org

2, 4, 6, 7, 10, 11, 12, 16, 18, 19, 20, 21, 25, 26, 30, 31, 33, 34, 35, 36, 41, 46, 47, 48, 52, 53, 54, 55, 56, 57, 58, 60, 61, 63, 68, 71, 74, 75, 78, 79, 80, 83, 86, 88, 90, 91, 92, 93, 95, 97, 98, 99, 102, 103, 105, 108, 109, 116, 118, 119, 121, 123, 125
Offset: 1

Views

Author

Gus Wiseman, Sep 28 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH number of a strict integer partition (y_1, ..., y_k) is f(y_1) * ... * f(y_k).

Examples

			The sequence of all strict integer partitions of odd numbers begins: (1), (3), (2,1), (5), (4,1), (7), (3,2), (9), (6,1), (11), (4,3), (5,2), (13), (8,1), (4,2,1), (15), (7,2), (10,1), (5,4), (6,3), (17), (12,1), (19), (9,2), (8,3), (21), (6,2,1), (7,4), (5,3,1), (11,2), (14,1), (4,3,2).
		

Crossrefs

Programs

  • Mathematica
    nn=200;
    FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}:>2^(m-1)]]]]];
    FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Select[Range[nn],OddQ[Total[FDfactor[#]/.FDrules]]&]
Showing 1-1 of 1 results.