cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319830 Decimal expansion of Integral_{0..oo} (x^(1/x-x)) dx.

Original entry on oeis.org

1, 3, 2, 0, 7, 3, 0, 4, 0, 0, 8, 6, 9, 6, 3, 6, 6, 6, 5, 4, 8, 8, 6, 1, 4, 8, 2, 7, 7, 8, 0, 7, 2, 6, 2, 0, 7, 5, 2, 3, 2, 4, 4, 7, 9, 5, 1, 8, 2, 5, 9, 6, 0, 7, 0, 6, 6, 7, 8, 7, 8, 5, 8, 5, 8, 6, 6, 3, 0, 3, 4, 9, 7, 2, 9, 7, 7, 2, 4, 3, 7, 4, 8, 1, 2, 5, 0, 3, 8, 5, 9, 2, 1, 9, 6, 6, 7, 2, 1, 7, 3, 9, 1, 7, 4
Offset: 1

Views

Author

Sam Coutteau, Sep 28 2018

Keywords

Examples

			1.3207304008696366654886148277807262075232447951825960706678785858663...
		

Crossrefs

Cf. A229191.

Programs

  • Maple
    evalf(Int(x^(1/x-x), x = 0..infinity), 120);
  • Mathematica
    RealDigits[NIntegrate[x^(1/x - x), {x, 0, Infinity}, WorkingPrecision -> 120]][[1]] (* Vaclav Kotesovec, Jan 15 2019 *)

Formula

Equals Integral_{0..oo} (x^(1/x-x)) dx (definition).
Equals Integral_{0..1} (x^(1/x-x) * (1 + 1/x^2) ) dx.
Equals Integral_{0..oo} ( (x + sqrt(x^2 + 4))/2 )^(-x) dx.

Extensions

More terms from Vaclav Kotesovec, Jan 15 2019