cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319837 Numbers whose distinct prime indices are pairwise indivisible and whose own prime indices span an initial interval of positive integers.

This page as a plain text file.
%I A319837 #25 Dec 16 2018 17:58:29
%S A319837 1,2,3,4,7,8,9,13,15,16,19,27,32,35,37,45,49,53,61,64,69,75,81,89,91,
%T A319837 95,113,128,131,135,141,143,145,151,161,165,169,175,207,223,225,243,
%U A319837 245,247,251,256,265,281,299,309,311,329,343,355,359,361,375,377,385
%N A319837 Numbers whose distinct prime indices are pairwise indivisible and whose own prime indices span an initial interval of positive integers.
%C A319837 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. This sequence lists all MM-numbers of not necessarily strict antichains of multisets spanning an initial interval of positive integers.
%e A319837 The sequence of multisystems whose MM-numbers belong to the sequence begins:
%e A319837    1: {}
%e A319837    2: {{}}
%e A319837    3: {{1}}
%e A319837    4: {{},{}}
%e A319837    7: {{1,1}}
%e A319837    8: {{},{},{}}
%e A319837    9: {{1},{1}}
%e A319837   13: {{1,2}}
%e A319837   15: {{1},{2}}
%e A319837   16: {{},{},{},{}}
%e A319837   19: {{1,1,1}}
%e A319837   27: {{1},{1},{1}}
%e A319837   32: {{},{},{},{},{}}
%e A319837   35: {{2},{1,1}}
%e A319837   37: {{1,1,2}}
%e A319837   45: {{1},{1},{2}}
%e A319837   49: {{1,1},{1,1}}
%e A319837   53: {{1,1,1,1}}
%e A319837   61: {{1,2,2}}
%e A319837   64: {{},{},{},{},{},{}}
%e A319837   69: {{1},{2,2}}
%e A319837   75: {{1},{2},{2}}
%e A319837   81: {{1},{1},{1},{1}}
%e A319837   89: {{1,1,1,2}}
%e A319837   91: {{1,1},{1,2}}
%e A319837   95: {{2},{1,1,1}}
%t A319837 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A319837 normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
%t A319837 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
%t A319837 Select[Range[200],And[normQ[primeMS/@primeMS[#]],stableQ[primeMS[#],Divisible]]&]
%Y A319837 Cf. A003963, A006126, A055932, A056239, A112798, A285572, A290103, A293993, A302242, A304713, A316476, A318401, A319721, A320275, A320456.
%K A319837 nonn
%O A319837 1,2
%A A319837 _Gus Wiseman_, Dec 16 2018