This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319837 #25 Dec 16 2018 17:58:29 %S A319837 1,2,3,4,7,8,9,13,15,16,19,27,32,35,37,45,49,53,61,64,69,75,81,89,91, %T A319837 95,113,128,131,135,141,143,145,151,161,165,169,175,207,223,225,243, %U A319837 245,247,251,256,265,281,299,309,311,329,343,355,359,361,375,377,385 %N A319837 Numbers whose distinct prime indices are pairwise indivisible and whose own prime indices span an initial interval of positive integers. %C A319837 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. This sequence lists all MM-numbers of not necessarily strict antichains of multisets spanning an initial interval of positive integers. %e A319837 The sequence of multisystems whose MM-numbers belong to the sequence begins: %e A319837 1: {} %e A319837 2: {{}} %e A319837 3: {{1}} %e A319837 4: {{},{}} %e A319837 7: {{1,1}} %e A319837 8: {{},{},{}} %e A319837 9: {{1},{1}} %e A319837 13: {{1,2}} %e A319837 15: {{1},{2}} %e A319837 16: {{},{},{},{}} %e A319837 19: {{1,1,1}} %e A319837 27: {{1},{1},{1}} %e A319837 32: {{},{},{},{},{}} %e A319837 35: {{2},{1,1}} %e A319837 37: {{1,1,2}} %e A319837 45: {{1},{1},{2}} %e A319837 49: {{1,1},{1,1}} %e A319837 53: {{1,1,1,1}} %e A319837 61: {{1,2,2}} %e A319837 64: {{},{},{},{},{},{}} %e A319837 69: {{1},{2,2}} %e A319837 75: {{1},{2},{2}} %e A319837 81: {{1},{1},{1},{1}} %e A319837 89: {{1,1,1,2}} %e A319837 91: {{1,1},{1,2}} %e A319837 95: {{2},{1,1,1}} %t A319837 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A319837 normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]]; %t A319837 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A319837 Select[Range[200],And[normQ[primeMS/@primeMS[#]],stableQ[primeMS[#],Divisible]]&] %Y A319837 Cf. A003963, A006126, A055932, A056239, A112798, A285572, A290103, A293993, A302242, A304713, A316476, A318401, A319721, A320275, A320456. %K A319837 nonn %O A319837 1,2 %A A319837 _Gus Wiseman_, Dec 16 2018