This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319841 #5 Sep 30 2018 20:26:48 %S A319841 0,1,1,2,1,2,1,3,1,2,1,3,1,2,2,4,1,3,1,4,2,2,1,5,2,2,2,4,1,5,1,6,2,2, %T A319841 2,6,1,2,2,7,1,6,1,4,4,2,1,8,2,5,2,4,1,6,2,8,2,2,1,7,1,2,4,9,2,6,1,4, %U A319841 2,6,1,8,1,2,6,4,2,6,1,9,4,2,1,10,2,2,2 %N A319841 Number of distinct positive integers that can be obtained by iteratively adding or multiplying together parts of the integer partition with Heinz number n until only one part remains. %F A319841 a(2^n) = A048249(n). %e A319841 60 is the Heinz number of (3,2,1,1) and %e A319841 5 = (3+2)*1*1 %e A319841 6 = 3*2*1*1 %e A319841 7 = 3+2+1+1 %e A319841 8 = (3+1)*2*1 %e A319841 9 = 3*(2+1)*1 %e A319841 10 = (3+2)*(1+1) %e A319841 12 = (3+1)*(2+1) %e A319841 so we have a(60) = 7. It is not possible to obtain 11 by adding or multiplying together the parts of (3,2,1,1). %t A319841 ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]]; %t A319841 Table[Length[Select[ReplaceListRepeated[{If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x*y]]}],Length[#]==1&]],{n,100}] %Y A319841 Cf. A001055, A001970, A048249, A056239, A063834, A066739, A066815, A281113, A318948, A318949, A319855, A319856. %K A319841 nonn %O A319841 1,4 %A A319841 _Gus Wiseman_, Sep 29 2018