cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319841 Number of distinct positive integers that can be obtained by iteratively adding or multiplying together parts of the integer partition with Heinz number n until only one part remains.

This page as a plain text file.
%I A319841 #5 Sep 30 2018 20:26:48
%S A319841 0,1,1,2,1,2,1,3,1,2,1,3,1,2,2,4,1,3,1,4,2,2,1,5,2,2,2,4,1,5,1,6,2,2,
%T A319841 2,6,1,2,2,7,1,6,1,4,4,2,1,8,2,5,2,4,1,6,2,8,2,2,1,7,1,2,4,9,2,6,1,4,
%U A319841 2,6,1,8,1,2,6,4,2,6,1,9,4,2,1,10,2,2,2
%N A319841 Number of distinct positive integers that can be obtained by iteratively adding or multiplying together parts of the integer partition with Heinz number n until only one part remains.
%F A319841 a(2^n) = A048249(n).
%e A319841 60 is the Heinz number of (3,2,1,1) and
%e A319841    5 = (3+2)*1*1
%e A319841    6 = 3*2*1*1
%e A319841    7 = 3+2+1+1
%e A319841    8 = (3+1)*2*1
%e A319841    9 = 3*(2+1)*1
%e A319841   10 = (3+2)*(1+1)
%e A319841   12 = (3+1)*(2+1)
%e A319841 so we have a(60) = 7. It is not possible to obtain 11 by adding or multiplying together the parts of (3,2,1,1).
%t A319841 ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]];
%t A319841 Table[Length[Select[ReplaceListRepeated[{If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x*y]]}],Length[#]==1&]],{n,100}]
%Y A319841 Cf. A001055, A001970, A048249, A056239, A063834, A066739, A066815, A281113, A318948, A318949, A319855, A319856.
%K A319841 nonn
%O A319841 1,4
%A A319841 _Gus Wiseman_, Sep 29 2018