cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319855 Minimum number that can be obtained by iteratively adding or multiplying together parts of the integer partition with Heinz number n until only one part remains.

This page as a plain text file.
%I A319855 #10 Oct 04 2018 10:15:32
%S A319855 0,1,2,1,3,2,4,1,4,3,5,2,6,4,5,1,7,4,8,3,6,5,9,2,6,6,6,4,10,5,11,1,7,
%T A319855 7,7,4,12,8,8,3,13,6,14,5,7,9,15,2,8,6,9,6,16,6,8,4,10,10,17,5,18,11,
%U A319855 8,1,9,7,19,7,11,7,20,4,21,12,8,8,9,8,22,3,8
%N A319855 Minimum number that can be obtained by iteratively adding or multiplying together parts of the integer partition with Heinz number n until only one part remains.
%C A319855 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%F A319855 a(1) = 0, a(n) = max(A056239(n) - A007814(n), 1). - _Charlie Neder_, Oct 03 2018
%e A319855 a(30) = 5 because the minimum number that can be obtained starting with (3,2,1) is 3+2*1 = 5.
%t A319855 ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]];
%t A319855 nexos[ptn_]:=If[Length[ptn]==0,{0},Union@@Select[ReplaceListRepeated[{Sort[ptn]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x*y]]}],Length[#]==1&]];
%t A319855 Table[Min[nexos[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]],{n,100}]
%Y A319855 Cf. A000792, A001970, A048249, A056239, A066739, A066815, A070960, A201163, A319850, A318948, A318949, A319841, A319856.
%K A319855 nonn
%O A319855 1,3
%A A319855 _Gus Wiseman_, Sep 29 2018