cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319856 Maximum number that can be obtained by iteratively adding or multiplying together parts of the integer partition with Heinz number n until only one part remains.

This page as a plain text file.
%I A319856 #5 Sep 30 2018 20:27:11
%S A319856 0,1,2,2,3,3,4,3,4,4,5,4,6,5,6,4,7,6,8,6,8,6,9,6,9,7,8,8,10,9,11,6,10,
%T A319856 8,12,9,12,9,12,9,13,12,14,10,12,10,15,9,16,12,14,12,16,12,15,12,16,
%U A319856 11,17,12,18,12,16,9,18,15,19,14,18,16,20,12,21,13
%N A319856 Maximum number that can be obtained by iteratively adding or multiplying together parts of the integer partition with Heinz number n until only one part remains.
%C A319856 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%e A319856 a(30) = 9 because the maximum number that can be obtained starting with (3,2,1) is 3*(2+1) = 9.
%t A319856 ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]];
%t A319856 nexos[ptn_]:=If[Length[ptn]==0,{0},Union@@Select[ReplaceListRepeated[{Sort[ptn]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x*y]]}],Length[#]==1&]];
%t A319856 Table[Max[nexos[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]],{n,100}]
%Y A319856 Cf. A000792, A001970, A048249, A056239, A066739, A066815, A070960, A201163, A319850, A318948, A318949, A319841, A319855.
%K A319856 nonn
%O A319856 1,3
%A A319856 _Gus Wiseman_, Sep 29 2018