This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319857 #23 Nov 13 2018 14:09:51 %S A319857 0,3,14,58,250,994,4066,16174,65326,261934,1048366,4191994,16774906, %T A319857 67078834,268405426,1073711794,4294937266,17179358674,68718966226, %U A319857 274868207254,1099501928086,4398036811414,17592176344726,70368521084794,281474753617786,1125899683749754,4503599404277626 %N A319857 Difference between 4^n and the product of primes less than or equal to n. %H A319857 Erdős Pál, <a href="http://combinatorica.hu/~p_erdos/1989-29.pdf">"Ramanujan and I"</a> Number Theory, Madras 1987. Springer, Berlin, Heidelberg, 1989. 1-17. %H A319857 Leo Moser, <a href="https://cms.math.ca/10.4153/CMB-1959-017-9">"On the product of the primes not exceeding n"</a>, Canad. Math. Bull. 2 (1959), 119 - 121. %F A319857 a(n) = 4^n - n#, where n# is the product of primes less than or equal to n (see A034386). %e A319857 4^5 = 1024. The primes less than or equal to 5 are 2, 3, and 5. Then 2 * 3 * 5 = 30 and hence a(5) = 1024 - 30 = 994. %p A319857 restart; %p A319857 with(NumberTheory); %p A319857 a := n -> 4^n-product(ithprime(i), i = 1 .. PrimeCounting(n)): %p A319857 0, seq(a(n), n = 1 .. 15); # _Stefano Spezia_, Nov 06 2018 %t A319857 Table[4^n - Times@@Select[Range[n], PrimeQ], {n, 0, 31}] %o A319857 (PARI) a034386(n) = my(v=primes(primepi(n))); prod(i=1, #v, v[i]) \\ after _Charles R Greathouse IV_ in A034386 %o A319857 a(n) = 4^n - a034386(n) \\ _Felix Fröhlich_, Nov 04 2018 %Y A319857 Cf. A000302 (4^n), A034386 (n#), A319852. %K A319857 nonn %O A319857 0,2 %A A319857 _Alonso del Arte_, Sep 29 2018