cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319860 Expansion of Product_{k>0} (1 - 2*k*x^(2*k))/(1 + (2*k-1)*x^(2*k-1)).

This page as a plain text file.
%I A319860 #14 Feb 23 2019 09:56:47
%S A319860 1,-1,-1,-2,-2,3,8,7,-6,-2,12,10,-9,-10,-98,-171,12,224,178,300,30,
%T A319860 -992,-547,1612,1950,-290,-2859,-4532,-878,13260,23998,-6100,-51628,
%U A319860 -56630,-24790,65573,217178,103912,-278804,-418582,25319,698460,1300830,252430,-3165500
%N A319860 Expansion of Product_{k>0} (1 - 2*k*x^(2*k))/(1 + (2*k-1)*x^(2*k-1)).
%F A319860 Convolution inverse of A319859.
%p A319860 seq(coeff(series(mul((1-2*k*x^(2*k))/(1+(2*k-1)*x^(2*k-1)),k=1..n),x,n+1), x, n), n = 0 .. 45); # _Muniru A Asiru_, Sep 29 2018
%o A319860 (PARI) N=99; x='x+O('x^N); Vec(prod(k=1, N, (1-(2*k)*x^(2*k))/(1+(2*k-1)*x^(2*k-1))))
%Y A319860 Cf. A067553, A319859.
%K A319860 sign
%O A319860 0,4
%A A319860 _Seiichi Manyama_, Sep 29 2018