This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319869 #20 May 04 2021 15:28:02 %S A319869 5,20,60,120,120,130,210,840,5160,30360,30375,30570,33090,63120, %T A319869 390720,390740,391100,397560,507000,2251200,2251225,2251800,2265000, %U A319869 2554800,8626800,8626830,8627670,8651160,9284520,25727520,25727555,25728710,25766790,26984160 %N A319869 a(n) = 5*4*3*2*1 + 10*9*8*7*6 + 15*14*13*12*11 + ... + (up to the n-th term). %C A319869 For similar multiply/add sequences in descending blocks of k natural numbers, we have: a(n) = Sum_{j=1..k-1} (floor((n-j)/k)-floor((n-j-1)/k)) * (Product_{i=1..j} n-i-j+k+1) + Sum_{j=1..n} (floor(j/k)-floor((j-1)/k)) * (Product_{i=1..k} j-i+1). Here, k=5. %H A319869 Colin Barker, <a href="/A319869/b319869.txt">Table of n, a(n) for n = 1..1000</a> %e A319869 a(1) = 5; %e A319869 a(2) = 5*4 = 20; %e A319869 a(3) = 5*4*3 = 60; %e A319869 a(4) = 5*4*3*2 = 120; %e A319869 a(5) = 5*4*3*2*1 = 120; %e A319869 a(6) = 5*4*3*2*1 + 10 = 130; %e A319869 a(7) = 5*4*3*2*1 + 10*9 = 210; %e A319869 a(8) = 5*4*3*2*1 + 10*9*8 = 840; %e A319869 a(9) = 5*4*3*2*1 + 10*9*8*7 = 5160; %e A319869 a(10) = 5*4*3*2*1 + 10*9*8*7*6 = 30360; %e A319869 a(11) = 5*4*3*2*1 + 10*9*8*7*6 + 15 = 30375; %e A319869 a(12) = 5*4*3*2*1 + 10*9*8*7*6 + 15*14 = 30570; %e A319869 a(13) = 5*4*3*2*1 + 10*9*8*7*6 + 15*14*13 = 33090; %e A319869 a(14) = 5*4*3*2*1 + 10*9*8*7*6 + 15*14*13*12 = 63120; %e A319869 a(15) = 5*4*3*2*1 + 10*9*8*7*6 + 15*14*13*12*11 = 390720; %e A319869 a(16) = 5*4*3*2*1 + 10*9*8*7*6 + 15*14*13*12*11 + 20 = 390740; %e A319869 a(17) = 5*4*3*2*1 + 10*9*8*7*6 + 15*14*13*12*11 + 20*19 = 391100; %e A319869 a(18) = 5*4*3*2*1 + 10*9*8*7*6 + 15*14*13*12*11 + 20*19*18 = 397560; %e A319869 a(19) = 5*4*3*2*1 + 10*9*8*7*6 + 15*14*13*12*11 + 20*19*18*17 = 507000; %e A319869 a(20) = 5*4*3*2*1 + 10*9*8*7*6 + 15*14*13*12*11 + 20*19*18*17*16 = 2251200; %e A319869 etc. %p A319869 a:=(n,k)->add((floor((n-j)/k)-floor((n-j-1)/k))*(mul(n-i-j+k+1,i=1..j)),j=1..k-1) + add((floor(j/k)-floor((j-1)/k))*(mul(j-i+1,i=1..k)),j=1..n): seq(a(n,5),n=1..40); # _Muniru A Asiru_, Sep 30 2018 %t A319869 k:=5; a[n_]:=Sum[(Floor[(n-j)/k]-Floor[(n-j-1)/k])*Product[n-i-j+k+1, {i,1,j }] , {j,1,k-1}] + Sum[(Floor[j/k]-Floor[(j-1)/k])*Product[j-i+1, {i,1,k}], {j,1,n}]; Array[a, 50] (* _Stefano Spezia_, Sep 30 2018 *) %Y A319869 For similar sequences, see: A000217 (k=1), A319866 (k=2), A319867 (k=3), A319868 (k=4), this sequence (k=5), A319870 (k=6), A319871 (k=7), A319872 (k=8), A319873 (k=9), A319874 (k=10). %K A319869 nonn,easy %O A319869 1,1 %A A319869 _Wesley Ivan Hurt_, Sep 29 2018