This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319870 #19 Oct 18 2018 10:34:34 %S A319870 6,30,120,360,720,720,732,852,2040,12600,95760,666000,666018,666306, %T A319870 670896,739440,1694160,14032080,14032104,14032632,14044224,14287104, %U A319870 19132560,110941200,110941230,110942070,110965560,111598920,128041920,538459200,538459236 %N A319870 a(n) = 6*5*4*3*2*1 + 12*11*10*9*8*7 + 18*17*16*15*14*13 + ... + (up to the n-th term). %C A319870 For similar multiply/add sequences in descending blocks of k natural numbers, we have: a(n) = Sum_{j=1..k-1} (floor((n-j)/k)-floor((n-j-1)/k)) * (Product_{i=1..j} n-i-j+k+1) + Sum_{j=1..n} (floor(j/k)-floor((j-1)/k)) * (Product_{i=1..k} j-i+1). Here, k=6. %H A319870 Colin Barker, <a href="/A319870/b319870.txt">Table of n, a(n) for n = 1..1000</a> %e A319870 a(1) = 6; %e A319870 a(2) = 6*5 = 30; %e A319870 a(3) = 6*5*4 = 120; %e A319870 a(4) = 6*5*4*3 = 360; %e A319870 a(5) = 6*5*4*3*2 = 720; %e A319870 a(6) = 6*5*4*3*2*1 = 720; %e A319870 a(7) = 6*5*4*3*2*1 + 12 = 732; %e A319870 a(8) = 6*5*4*3*2*1 + 12*11 = 852; %e A319870 a(9) = 6*5*4*3*2*1 + 12*11*10 = 2040; %e A319870 a(10) = 6*5*4*3*2*1 + 12*11*10*9 = 12600; %e A319870 a(11) = 6*5*4*3*2*1 + 12*11*10*9*8 = 95760; %e A319870 a(12) = 6*5*4*3*2*1 + 12*11*10*9*8*7 = 666000; %e A319870 a(13) = 6*5*4*3*2*1 + 12*11*10*9*8*7 + 18 = 666018; %e A319870 a(14) = 6*5*4*3*2*1 + 12*11*10*9*8*7 + 18*17 = 666306; %e A319870 a(15) = 6*5*4*3*2*1 + 12*11*10*9*8*7 + 18*17*16 = 670896; %e A319870 a(16) = 6*5*4*3*2*1 + 12*11*10*9*8*7 + 18*17*16*15 = 739440; %e A319870 a(17) = 6*5*4*3*2*1 + 12*11*10*9*8*7 + 18*17*16*15*14 = 1694160; %e A319870 a(18) = 6*5*4*3*2*1 + 12*11*10*9*8*7 + 18*17*16*15*14*13 = 14032080; %e A319870 a(19) = 6*5*4*3*2*1 + 12*11*10*9*8*7 + 18*17*16*15*14*13 + 24 = 14032104; %e A319870 a(20) = 6*5*4*3*2*1 + 12*11*10*9*8*7 + 18*17*16*15*14*13 + 24*23 = 14032632; %e A319870 etc. %p A319870 a:=(n,k)->add((floor((n-j)/k)-floor((n-j-1)/k))*(mul(n-i-j+k+1,i=1..j)),j=1..k-1) + add((floor(j/k)-floor((j-1)/k))*(mul(j-i+1,i=1..k)),j=1..n): seq(a(n,6),n=1..35); # _Muniru A Asiru_, Sep 30 2018 %t A319870 k:=6; a[n_]:=Sum[(Floor[(n-j)/k]-Floor[(n-j-1)/k])*Product[n-i-j+k+1, {i,1,j }] , {j,1,k-1} ] + Sum[(Floor[j/k]-Floor[(j-1)/k])*Product[j-i+1, {i,1,k}], {j,1,n}]; Array[a, 50] (* _Stefano Spezia_, Sep 30 2018 *) %Y A319870 For similar sequences, see: A000217 (k=1), A319866 (k=2), A319867 (k=3), A319868 (k=4), A319869 (k=5), this sequence (k=6), A319871 (k=7), A319872 (k=8), A319873 (k=9), A319874 (k=10). %K A319870 nonn,easy %O A319870 1,1 %A A319870 _Wesley Ivan Hurt_, Sep 30 2018