cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319877 Numbers whose product of prime indices (A003963) is a square of a squarefree number (A062503).

Original entry on oeis.org

1, 7, 9, 14, 18, 23, 25, 28, 36, 46, 50, 56, 72, 92, 97, 100, 112, 121, 144, 151, 161, 169, 175, 183, 184, 185, 194, 195, 200, 207, 224, 225, 227, 242, 288, 289, 302, 322, 338, 350, 366, 368, 370, 388, 390, 400, 414, 448, 450, 454, 484, 541, 576, 578, 604, 644
Offset: 1

Views

Author

Gus Wiseman, Dec 17 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. This sequence lists all MM-numbers of 2-regular multiset multisystems (meaning all vertex-degrees are 2).

Examples

			The sequence of multiset multisystems whose MM-numbers belong to the sequence begins:
    1: {}
    7: {{1,1}}
    9: {{1},{1}}
   14: {{},{1,1}}
   18: {{},{1},{1}}
   23: {{2,2}}
   25: {{2},{2}}
   28: {{},{},{1,1}}
   36: {{},{},{1},{1}}
   46: {{},{2,2}}
   50: {{},{2},{2}}
   56: {{},{},{},{1,1}}
   72: {{},{},{},{1},{1}}
   92: {{},{},{2,2}}
   97: {{3,3}}
  100: {{},{},{2},{2}}
  112: {{},{},{},{},{1,1}}
  121: {{3},{3}}
  144: {{},{},{},{},{1},{1}}
  151: {{1,1,2,2}}
  161: {{1,1},{2,2}}
  169: {{1,2},{1,2}}
  175: {{2},{2},{1,1}}
  183: {{1},{1,2,2}}
  184: {{},{},{},{2,2}}
  185: {{2},{1,1,2}}
  194: {{},{3,3}}
  195: {{1},{2},{1,2}}
  200: {{},{},{},{2},{2}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Or[#==1,SameQ[##,2]&@@Last/@FactorInteger[Times@@primeMS[#]]]&]