This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319878 #43 Dec 18 2018 17:07:23 %S A319878 1,7,9,23,25,97,121,151,161,169,175,183,185,195,207,225,227,289,541, %T A319878 661,679,687,781,841,847,873,957,961,1009,1089,1193,1427,1563,1589, %U A319878 1681,1819,1849,1879,1895,2023,2043,2167,2193,2209,2231,2425,2437,2585,2601 %N A319878 Odd numbers whose product of prime indices (A003963) is a square of a squarefree number (A062503). %C A319878 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. This sequence lists all MM-numbers of 2-regular (all vertex-degrees are 2) multiset partitions (no empty parts). %e A319878 The sequence of multiset partitions whose MM-numbers belong to the sequence begins: %e A319878 1: {} %e A319878 7: {{1,1}} %e A319878 9: {{1},{1}} %e A319878 23: {{2,2}} %e A319878 25: {{2},{2}} %e A319878 97: {{3,3}} %e A319878 121: {{3},{3}} %e A319878 151: {{1,1,2,2}} %e A319878 161: {{1,1},{2,2}} %e A319878 169: {{1,2},{1,2}} %e A319878 175: {{2},{2},{1,1}} %e A319878 183: {{1},{1,2,2}} %e A319878 185: {{2},{1,1,2}} %e A319878 195: {{1},{2},{1,2}} %e A319878 207: {{1},{1},{2,2}} %e A319878 225: {{1},{1},{2},{2}} %e A319878 227: {{4,4}} %e A319878 289: {{4},{4}} %e A319878 541: {{1,1,3,3}} %e A319878 661: {{5,5}} %e A319878 679: {{1,1},{3,3}} %e A319878 687: {{1},{1,3,3}} %e A319878 781: {{3},{1,1,3}} %e A319878 841: {{1,3},{1,3}} %e A319878 847: {{1,1},{3},{3}} %e A319878 873: {{1},{1},{3,3}} %e A319878 957: {{1},{3},{1,3}} %e A319878 961: {{5},{5}} %t A319878 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A319878 Select[Range[1,100,2],Or[#==1,SameQ[##,2]&@@Last/@FactorInteger[Times@@primeMS[#]]]&] %Y A319878 Cf. A003963, A005117, A005176, A062503, A064573, A072774, A295193, A302505, A319877, A319899, A320325, A322526, A322527, A322530. %K A319878 nonn %O A319878 1,2 %A A319878 _Gus Wiseman_, Dec 17 2018