A319882 Number of ordered pairs (i, j) with 0 < i < j < prime(n)/2 such that (i^4 mod prime(n)) > (j^4 mod prime(n)).
0, 0, 0, 3, 3, 10, 16, 21, 33, 54, 82, 85, 103, 125, 138, 165, 157, 204, 267, 259, 359, 422, 471, 504, 584, 564, 627, 713, 628, 1053, 960, 1213, 1017, 1278, 1275, 1367, 1522, 1671, 1661, 2118, 2038, 2005, 2242, 2330, 2234, 2418, 3194, 3112, 3126
Offset: 2
Keywords
Examples
a(5) = 3 since prime(5) = 11, and the only ordered pairs (i, j) with 0 < i < j < 11/2 and (i^4 mod 11) > (j^4 mod 11) are (2, 3), (2, 4), (3, 4).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 2..1000
- Zhi-Wei Sun, Quadratic residues and related permutations, arXiv:1809.07766 [math.NT], 2018.
Programs
-
Mathematica
f[k_, p_] := f[k, p] = PowerMod[k, 4, p]; Inv[p_] := Inv[p] = Sum[Boole[f[i, p] > f[j, p]], {j, 2, (p - 1)/2}, {i, 1, j - 1}]; Table[Inv[Prime[n]], {n, 2, 50}]
Comments