A319903 Number of ordered pairs (i,j) with 0 < i < j < prime(n)/2 such that (i^8 mod prime(n)) > (j^8 mod prime(n)).
0, 0, 1, 2, 7, 5, 10, 22, 45, 48, 68, 53, 104, 127, 146, 200, 203, 250, 288, 312, 387, 318, 450, 557, 536, 745, 664, 581, 722, 797, 986, 1011, 1082, 1474, 1294, 1317, 1608, 1684, 1893, 2096, 1898, 2297, 2333, 2090, 2467, 2652, 2836, 3352, 3698, 3326, 3380, 2981, 3778, 3902, 4165, 4743, 4350, 4652, 4240
Offset: 2
Keywords
Examples
a(4) = 1 since prime(4) = 7, and (R(1^8,7),R(2^8,7),R(3^8,7)) = (1,3,2) with R(2^8,7) > R(3^8,7). a(5) = 2 since prime(5) = 11, and (R(1^8,11),...,R(5^8,11)) = (1,3,5,2,4) with R(2^8,11) > R(4^8,11), R(3^8,11) > R(4^8,11) and R(3^8,11) > R(5^8,11).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 2..1000
- Zhi-Wei Sun, Quadratic residues and related permutations, arXiv:1809.07766 [math.NT], 2018.
Programs
-
Mathematica
f[k_,p_]:=f[k,p]=PowerMod[k,8,p];Inv[p_]:=Inv[p]=Sum[Boole[f[i,p]>f[j,p]],{j,2,(p-1)/2},{i,1,j-1}];Table[Inv[Prime[n]],{n,2,60}]
Comments