cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319903 Number of ordered pairs (i,j) with 0 < i < j < prime(n)/2 such that (i^8 mod prime(n)) > (j^8 mod prime(n)).

Original entry on oeis.org

0, 0, 1, 2, 7, 5, 10, 22, 45, 48, 68, 53, 104, 127, 146, 200, 203, 250, 288, 312, 387, 318, 450, 557, 536, 745, 664, 581, 722, 797, 986, 1011, 1082, 1474, 1294, 1317, 1608, 1684, 1893, 2096, 1898, 2297, 2333, 2090, 2467, 2652, 2836, 3352, 3698, 3326, 3380, 2981, 3778, 3902, 4165, 4743, 4350, 4652, 4240
Offset: 2

Views

Author

Zhi-Wei Sun, Oct 01 2018

Keywords

Comments

Conjecture 1: Let p be an odd prime, and let N be the number of ordered pairs (i,j) with 0 < i < j < p/2 and (i^8 mod p) > (j^8 mod p). When p == 1 (mod 8), we have 2 | N if and only if 2 is a quartic residue modulo p. Also, N is even if p == 3 (mod 8). When p == 5 (mod 8), we have N == (p-5)/8 (mod 2). If p == 7 (mod 8) then N == (h(-p)+1)/2 (mod 2), where h(-p) is the class number of the imaginary quadratic field Q(sqrt(-p)).
Conjecture 2: Let p be an odd prime, and let N' be the number of ordered pairs (i,j) with 0 < i < j < p/2 and R(i^8,p) > R(j^8,p), where R(k,p) denotes the unique integer r among 0,...,(p-1)/2 with k congruent to r or -r modulo p. When p == 9 (mod 16), we have 2 | N' if and only if 2 is a quartic residue modulo p. Also, N' == floor((p+1)/8) (mod 2) if p is not congruent to 9 modulo 16.
See also A319311, A319480, A319882 and A319894 for similar conjectures.

Examples

			a(4) = 1 since prime(4) = 7, and (R(1^8,7),R(2^8,7),R(3^8,7)) = (1,3,2) with R(2^8,7) > R(3^8,7).
a(5) = 2 since prime(5) = 11, and (R(1^8,11),...,R(5^8,11)) = (1,3,5,2,4) with R(2^8,11) > R(4^8,11), R(3^8,11) > R(4^8,11) and R(3^8,11) > R(5^8,11).
		

Crossrefs

Programs

  • Mathematica
    f[k_,p_]:=f[k,p]=PowerMod[k,8,p];Inv[p_]:=Inv[p]=Sum[Boole[f[i,p]>f[j,p]],{j,2,(p-1)/2},{i,1,j-1}];Table[Inv[Prime[n]],{n,2,60}]