cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319907 Number of distinct integers that can be obtained by iteratively adding any two or multiplying any two non-1 parts of an integer partition until only one part remains, starting with the integer partition with Heinz number n.

This page as a plain text file.
%I A319907 #9 Oct 01 2018 21:16:51
%S A319907 1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,2,1,2,2,1,1,2,2,1,2,2,1,4,1,2,2,1,
%T A319907 2,4,1,1,2,4,1,4,1,2,4,1,1,4,2,3,2,2,1,5,2,4,2,1,1,5,1,1,4,4,2,4,1,2,
%U A319907 2,4,1,5,1,1,6,2,2,4,1,5,4,1,1,7,2,1,2
%N A319907 Number of distinct integers that can be obtained by iteratively adding any two or multiplying any two non-1 parts of an integer partition until only one part remains, starting with the integer partition with Heinz number n.
%C A319907 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%e A319907 The Heinz number of (3,3,2) is 75 and we have
%e A319907     3+3+2 = 8,
%e A319907     3+3*2 = 9,
%e A319907     3*3+2 = 11,
%e A319907   (3+3)*2 = 12,
%e A319907   3*(3+2) = 15,
%e A319907     3*3*2 = 18,
%e A319907 so a(75) = 6.
%t A319907 ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]];
%t A319907 mexos[ptn_]:=If[Length[ptn]==0,{0},Union@@Select[ReplaceListRepeated[{Sort[ptn]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_?(#>1&),mie___,y_?(#>1&),afe___}:>Sort[Append[{foe,mie,afe},x*y]]}],Length[#]==1&]];
%t A319907 Table[Length[mexos[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]],{n,100}]
%Y A319907 Cf. A000792, A001970, A005520, A048249, A066739, A070960, A201163, A275870, A319850, A318949, A319855, A319856, A319909, A319912, A319913.
%K A319907 nonn
%O A319907 1,15
%A A319907 _Gus Wiseman_, Oct 01 2018