A319910 Number of distinct pairs (m, y), where m >= 1 and y is an integer partition of n, such that m can be obtained by iteratively adding or multiplying together parts of y until only one part (equal to m) remains.
1, 3, 6, 11, 23, 48, 85, 178, 331, 619, 1176, 2183, 3876, 7013, 12447, 21719, 37628, 64570, 109723, 185055
Offset: 1
Examples
The a(4) = 11 pairs: 4 <= (4) 3 <= (3,1) 4 <= (3,1) 4 <= (2,2) 2 <= (2,1,1) 3 <= (2,1,1) 4 <= (2,1,1) 1 <= (1,1,1,1) 2 <= (1,1,1,1) 3 <= (1,1,1,1) 4 <= (1,1,1,1)
Crossrefs
Programs
-
Mathematica
ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]]; nexos[ptn_]:=If[Length[ptn]==0,{0},Union@@Select[ReplaceListRepeated[{Sort[ptn]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x*y]]}],Length[#]==1&]]; Table[Total[Length/@nexos/@IntegerPartitions[n]],{n,20}]