A319911 Number of distinct pairs (m, y), where m >= 1 and y is an integer partition of n with no 1's, such that m can be obtained by iteratively adding or multiplying together parts of y until only one part (equal to m) remains.
0, 1, 1, 2, 3, 7, 9, 21, 31, 65, 102, 194, 321, 575, 956, 1652, 2684, 4576, 7367, 12035, 19490, 31185, 49418, 78595, 123393
Offset: 1
Examples
The a(6) = 7 pairs: 6 <= (6) 6 <= (4,2) 8 <= (4,2) 6 <= (3,3) 9 <= (3,3) 6 <= (2,2,2) 8 <= (2,2,2) The a(7) = 9 pairs: 7 <= (7) 7 <= (5,2) 10 <= (5,2) 7 <= (4,3) 12 <= (4,3) 7 <= (3,2,2) 8 <= (3,2,2) 10 <= (3,2,2) 12 <= (3,2,2)
Crossrefs
Programs
-
Mathematica
ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]]; nexos[ptn_]:=If[Length[ptn]==0,{0},Union@@Select[ReplaceListRepeated[{Sort[ptn]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x*y]]}],Length[#]==1&]]; Table[Total[Length/@nexos/@Select[IntegerPartitions[n],FreeQ[#,1]&]],{n,30}]