cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319928 Numbers k such that there is no other m such that (Z/mZ)* is isomorphic to (Z/kZ)*, where (Z/kZ)* is the multiplicative group of integers modulo k.

Original entry on oeis.org

24, 32, 80, 96, 120, 128, 160, 168, 240, 252, 256, 264, 324, 384, 400, 408, 416, 456, 480, 504, 512, 544, 552, 640, 648, 672, 696, 768, 840, 928, 1040, 1088, 1128, 1272, 1280, 1312, 1320, 1360, 1408, 1416, 1504, 1536, 1632, 1696, 1704, 1840, 1848, 1896, 1920, 1992
Offset: 1

Views

Author

Jianing Song, Oct 03 2018

Keywords

Comments

Numbers such that A317993(k) = 1.
To find such k, it's sufficient to check for A015126(k) <= m <= A028476(k).
This is a subsequence of A296233. As a result, all members in this sequence should not satisfy any congruence mentioned there. Specially, all terms here are divisible by 4.
There are only 218 terms <= 10000 and 396 terms <= 20000.

Examples

			(Z/24Z)* = C_2 X C_2 X C_2, and there is no other m such that (Z/mZ)* = C_2 X C_2 X C_2, so 24 is a term.
(Z/96Z)* = C_2 X C_2 X C_8, and there is no other m such that (Z/mZ)* = C_2 X C_2 X C_8, so 24 is a term.
		

Crossrefs

Programs

  • PARI
    b(n) = my(i=0, search_max = A057635(eulerphi(n))); for(j=eulerphi(n)+1, search_max, if(znstar(j)[2]==znstar(n)[2], i++)); i \\ search_max is the largest k such that phi(k) = phi(n). See A057635 for its program
    isA319928(n) = if(n>2, b(n)==1, 0)