This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319929 #87 Feb 21 2022 10:52:38 %S A319929 1,2,2,3,0,3,4,2,2,4,5,0,5,0,5,6,2,4,4,2,6,7,0,7,0,7,0,7,8,2,6,4,4,6, %T A319929 2,8,9,0,9,0,9,0,9,0,9,10,2,8,4,6,6,4,8,2,10,11,0,11,0,11,0,11,0,11,0, %U A319929 11,12,2,10,4,8,6,6,8,4,10,2,12 %N A319929 Minimal arithmetic table similar to multiplication with different rules for odd and even products, read by antidiagonals. %C A319929 This table is akin to multiplication in that it is associative, 1 is the identity and 0 takes any number to 0. Associativity is proved by checking eight cases of three ordered odd and even numbers. Distributivity works except if an even number is partitioned into a sum of two odd numbers. %H A319929 Michael De Vlieger, <a href="/A319929/b319929.txt">Table of n, a(n) for n = 1..11325</a> (rows n = 1..150, flattened) %H A319929 Michael De Vlieger, <a href="/A319929/a319929.png">Array plot of T(n,k)</a> for n = 1..150, k = 1..150 with color function indicating value, pale yellow = 0, red = 299. %H A319929 David Lovler, <a href="/A319929/a319929_2.pdf">Motivation</a> %F A319929 T(n,k) = n + k - 1 if n is odd and k is odd; %F A319929 T(n,k) = n if n is even and k is odd; %F A319929 T(n,k) = k if n is odd and k is even; %F A319929 T(n,k) = 0 if n is even and k is even. %e A319929 T(3,5) = 3 + 5 - 1 = 7, T(4,7) = 4, T(8,8) = 0. %e A319929 Array T(n,k) begins: %e A319929 1 2 3 4 5 6 7 8 9 10 %e A319929 2 0 2 0 2 0 2 0 2 0 %e A319929 3 2 5 4 7 6 9 8 11 10 %e A319929 4 0 4 0 4 0 4 0 4 0 %e A319929 5 2 7 4 9 6 11 8 13 10 %e A319929 6 0 6 0 6 0 6 0 6 0 %e A319929 7 2 9 4 11 6 13 8 15 10 %e A319929 8 0 8 0 8 0 8 0 8 0 %e A319929 9 2 11 4 13 6 15 8 17 10 %e A319929 10 0 10 0 10 0 10 0 10 0 %t A319929 Table[Function[n, If[OddQ@ n, If[OddQ@ k, n + k - 1, k], If[OddQ@ k, n, 0]]][m - k + 1], {m, 12}, {k, m}] // Flatten (* _Michael De Vlieger_, Mar 24 2019 *) %o A319929 (PARI) T(n,k) = if (n%2, if (k%2, n+k-1, k), if (k%2, n, 0)); %o A319929 matrix(6, 6, n, k, T(n,k)) \\ _Michel Marcus_, Dec 22 2018 %Y A319929 Cf. A322630, A322744, A327259, A327263. %K A319929 nonn,tabl,easy %O A319929 1,2 %A A319929 _David Lovler_, Dec 17 2018