cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319933 A(n, k) = [x^k] DedekindEta(x)^n, square array read by descending antidiagonals, A(n, k) for n >= 0 and k >= 0.

This page as a plain text file.
%I A319933 #27 Dec 13 2024 10:12:54
%S A319933 1,0,1,0,-1,1,0,-1,-2,1,0,0,-1,-3,1,0,0,2,0,-4,1,0,1,1,5,2,-5,1,0,0,2,
%T A319933 0,8,5,-6,1,0,1,-2,0,-5,10,9,-7,1,0,0,0,-7,-4,-15,10,14,-8,1,0,0,-2,0,
%U A319933 -10,-6,-30,7,20,-9,1,0,0,-2,0,8,-5,0,-49,0,27,-10,1
%N A319933 A(n, k) = [x^k] DedekindEta(x)^n, square array read by descending antidiagonals, A(n, k) for n >= 0 and k >= 0.
%C A319933 The columns are generated by polynomials whose coefficients constitute the triangle of signed D'Arcais numbers A078521 when multiplied with n!.
%D A319933 G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Fifth ed., Clarendon Press, Oxford, 2003.
%H A319933 M. Boylan, <a href="http://dx.doi.org/10.1016/S0022-314X(02)00037-9">Exceptional congruences for the coefficients of certain eta-product newforms</a>, J. Number Theory 98 (2003), no. 2, 377-389. MR1955423 (2003k:11071)
%H A319933 Steven R. Finch, <a href="https://arxiv.org/abs/math/0701251">Powers of Euler's q-Series</a>, arXiv:math/0701251 [math.NT], 2007.
%H A319933 Vaclav Kotesovec, <a href="http://oeis.org/A258232/a258232_2.pdf">The integration of q-series</a>
%H A319933 Y. Martin, <a href="http://dx.doi.org/10.1090/S0002-9947-96-01743-6">Multiplicative eta-quotients</a>, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
%H A319933 M. Newman, <a href="/A000727/a000727.pdf">A table of the coefficients of the powers of eta(tau)</a>, Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216. [Annotated scanned copy]
%H A319933 Tim Silverman, <a href="http://arxiv.org/abs/1612.08085">Counting Cliques in Finite Distant Graphs</a>, arXiv preprint arXiv:1612.08085 [math.CO], 2016.
%H A319933 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H A319933 <a href="/index/Pro#1mxtok">Index entries for expansions of Product_{k >= 1} (1-x^k)^m</a>
%e A319933 [ 0] 1,   0,   0,    0,     0,    0,     0,     0,     0,     0, ... A000007
%e A319933 [ 1] 1,  -1,  -1,    0,     0,    1,     0,     1,     0,     0, ... A010815
%e A319933 [ 2] 1,  -2,  -1,    2,     1,    2,    -2,     0,    -2,    -2, ... A002107
%e A319933 [ 3] 1,  -3,   0,    5,     0,    0,    -7,     0,     0,     0, ... A010816
%e A319933 [ 4] 1,  -4,   2,    8,    -5,   -4,   -10,     8,     9,     0, ... A000727
%e A319933 [ 5] 1,  -5,   5,   10,   -15,   -6,    -5,    25,    15,   -20, ... A000728
%e A319933 [ 6] 1,  -6,   9,   10,   -30,    0,    11,    42,     0,   -70, ... A000729
%e A319933 [ 7] 1,  -7,  14,    7,   -49,   21,    35,    41,   -49,  -133, ... A000730
%e A319933 [ 8] 1,  -8,  20,    0,   -70,   64,    56,     0,  -125,  -160, ... A000731
%e A319933 [ 9] 1,  -9,  27,  -12,   -90,  135,    54,   -99,  -189,   -85, ... A010817
%e A319933 [10] 1, -10,  35,  -30,  -105,  238,     0,  -260,  -165,   140, ... A010818
%e A319933     A001489,  v , A167541, v , A319931,  v ,         diagonal: A008705
%e A319933            A080956       A319930      A319932
%p A319933 DedekindEta := (x, n) -> mul(1-x^j, j=1..n):
%p A319933 A319933row := proc(n, len) series(DedekindEta(x, len)^n, x, len+1):
%p A319933 seq(coeff(%, x, j), j=0..len-1) end:
%p A319933 seq(print([n], A319933row(n, 10)), n=0..10);
%t A319933 eta[x_, n_] := Product[1 - x^j, {j, 1, n}];
%t A319933 A[n_, k_] := SeriesCoefficient[eta[x, k]^n, {x, 0, k}];
%t A319933 Table[A[n - k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Nov 10 2018 *)
%o A319933 (Sage)
%o A319933 from sage.modular.etaproducts import qexp_eta
%o A319933 def A319933row(n, len):
%o A319933     return (qexp_eta(ZZ['q'], len+4)^n).list()[:len]
%o A319933 for n in (0..10):
%o A319933     print(A319933row(n, 10))
%o A319933 (Julia) # DedekindEta is defined in A000594
%o A319933 for n in 0:10
%o A319933     DedekindEta(10, n) |> println
%o A319933 end
%Y A319933 Transpose of A286354.
%Y A319933 Cf. A078521, A319574 (JacobiTheta3).
%K A319933 sign,tabl
%O A319933 0,9
%A A319933 _Peter Luschny_, Oct 02 2018