cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319934 Coefficients of the columns generating polynomials of the JacobiTheta3 array A319574 multiplied by n!, triangle read by rows, T(n,k) for 0 <= k <= n.

This page as a plain text file.
%I A319934 #10 Oct 07 2018 04:44:43
%S A319934 1,0,2,0,-4,4,0,16,-24,8,0,-48,176,-96,16,0,288,-1120,1120,-320,32,0,
%T A319934 -1920,8896,-11520,5440,-960,64,0,11520,-77952,127232,-80640,22400,
%U A319934 -2688,128,0,-80640,738048,-1480192,1195264,-448000,82432,-7168,256
%N A319934 Coefficients of the columns generating polynomials of the JacobiTheta3 array A319574 multiplied by n!, triangle read by rows, T(n,k) for 0 <= k <= n.
%C A319934 The purpose of the multiplication with n! is to make the coefficients integral.
%e A319934 Triangle starts:
%e A319934 [0] 1
%e A319934 [1] 0,      2
%e A319934 [2] 0,     -4,      4
%e A319934 [3] 0,     16,    -24,        8
%e A319934 [4] 0,    -48,    176,      -96,      16
%e A319934 [5] 0,    288,  -1120,     1120,    -320,      32
%e A319934 [6] 0,  -1920,   8896,   -11520,    5440,    -960,    64
%e A319934 [7] 0,  11520, -77952,   127232,  -80640,   22400, -2688,   128
%e A319934 [8] 0, -80640, 738048, -1480192, 1195264, -448000, 82432, -7168,  256
%p A319934 A319934poly := proc(N, opt) local a, n;
%p A319934 if   N = 0 then a := n -> 0!*1
%p A319934 elif N = 1 then a := n -> 1!*2*n
%p A319934 elif N = 2 then a := n -> 2!*2*n*(n-1)
%p A319934 elif N = 3 then a := n -> 3!*(4/3)*n*(n-1)*(n-2)
%p A319934 elif N = 4 then a := n -> 4!*(2/3)*n*(n^3-6*n^2+11*n-3)
%p A319934 elif N = 5 then a := n -> 5!*(4/15)*n*(n-1)*(n^3-9*n^2+26*n-9)
%p A319934 elif N = 6 then a := n -> 6!*(4/45)*n*(n-2)*(n-1)*(n^3-12*n^2+47*n-15)
%p A319934 elif N = 7 then a := n -> 7!*(8/315)*n*(n-1)*(n-2)*(n-3)*(n^3-15*n^2+74*n-15) fi;
%p A319934 if   opt = 'val' then print(seq(a(n), n=0..19))
%p A319934 elif opt = 'coe' then print(seq(coeff(a(n), n, i), i=0..N));
%p A319934 elif opt = 'pol' then sort(expand(a(n)), n, ascending) fi end:
%p A319934 for N from 0 to 7 do A319934poly(N, 'coe') od;
%Y A319934 Cf. A319574.
%K A319934 sign,tabl
%O A319934 0,3
%A A319934 _Peter Luschny_, Oct 02 2018