This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319934 #10 Oct 07 2018 04:44:43 %S A319934 1,0,2,0,-4,4,0,16,-24,8,0,-48,176,-96,16,0,288,-1120,1120,-320,32,0, %T A319934 -1920,8896,-11520,5440,-960,64,0,11520,-77952,127232,-80640,22400, %U A319934 -2688,128,0,-80640,738048,-1480192,1195264,-448000,82432,-7168,256 %N A319934 Coefficients of the columns generating polynomials of the JacobiTheta3 array A319574 multiplied by n!, triangle read by rows, T(n,k) for 0 <= k <= n. %C A319934 The purpose of the multiplication with n! is to make the coefficients integral. %e A319934 Triangle starts: %e A319934 [0] 1 %e A319934 [1] 0, 2 %e A319934 [2] 0, -4, 4 %e A319934 [3] 0, 16, -24, 8 %e A319934 [4] 0, -48, 176, -96, 16 %e A319934 [5] 0, 288, -1120, 1120, -320, 32 %e A319934 [6] 0, -1920, 8896, -11520, 5440, -960, 64 %e A319934 [7] 0, 11520, -77952, 127232, -80640, 22400, -2688, 128 %e A319934 [8] 0, -80640, 738048, -1480192, 1195264, -448000, 82432, -7168, 256 %p A319934 A319934poly := proc(N, opt) local a, n; %p A319934 if N = 0 then a := n -> 0!*1 %p A319934 elif N = 1 then a := n -> 1!*2*n %p A319934 elif N = 2 then a := n -> 2!*2*n*(n-1) %p A319934 elif N = 3 then a := n -> 3!*(4/3)*n*(n-1)*(n-2) %p A319934 elif N = 4 then a := n -> 4!*(2/3)*n*(n^3-6*n^2+11*n-3) %p A319934 elif N = 5 then a := n -> 5!*(4/15)*n*(n-1)*(n^3-9*n^2+26*n-9) %p A319934 elif N = 6 then a := n -> 6!*(4/45)*n*(n-2)*(n-1)*(n^3-12*n^2+47*n-15) %p A319934 elif N = 7 then a := n -> 7!*(8/315)*n*(n-1)*(n-2)*(n-3)*(n^3-15*n^2+74*n-15) fi; %p A319934 if opt = 'val' then print(seq(a(n), n=0..19)) %p A319934 elif opt = 'coe' then print(seq(coeff(a(n), n, i), i=0..N)); %p A319934 elif opt = 'pol' then sort(expand(a(n)), n, ascending) fi end: %p A319934 for N from 0 to 7 do A319934poly(N, 'coe') od; %Y A319934 Cf. A319574. %K A319934 sign,tabl %O A319934 0,3 %A A319934 _Peter Luschny_, Oct 02 2018