This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319935 #6 Oct 07 2018 04:38:11 %S A319935 1,0,2,0,0,4,0,0,0,8,0,2,4,6,24,0,0,8,24,48,112,0,0,0,24,96,240,544,0, %T A319935 0,0,0,64,320,960,2368,0,0,4,12,24,200,1020,3444,9328,0,2,4,30,104, %U A319935 250,876,3542,12112,34802,0,8,24,144,560,1560,4424,14112,44640,129064,339064 %N A319935 T(n,k) = [x^n] JacobiTheta3(0,x)^k, for 0 <= k <= n, triangle read by rows. %e A319935 Triangle starts: %e A319935 [0] 1 %e A319935 [1] 0, 2 %e A319935 [2] 0, 0, 4 %e A319935 [3] 0, 0, 0, 8 %e A319935 [4] 0, 2, 4, 6, 24 %e A319935 [5] 0, 0, 8, 24, 48, 112 %e A319935 [6] 0, 0, 0, 24, 96, 240, 544 %e A319935 [7] 0, 0, 0, 0, 64, 320, 960, 2368 %e A319935 [8] 0, 0, 4, 12, 24, 200, 1020, 3444, 9328 %e A319935 [9] 0, 2, 4, 30, 104, 250, 876, 3542, 12112, 34802 %p A319935 A319935row := proc(n) local ser; %p A319935 ser := j -> series(JacobiTheta3(0, x)^j, x, n+1); %p A319935 seq(coeff(ser(j), x, n), j=0..n) end: %p A319935 seq(A319935row(n), n=0..10); %Y A319935 T(n,n) = A066535(n), row sums A320025. %Y A319935 Cf. A319574, A319934. %K A319935 nonn,tabl %O A319935 0,3 %A A319935 _Peter Luschny_, Oct 06 2018