This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319952 #15 Oct 03 2018 15:27:34 %S A319952 1,2,3,1,6,1,2,11,1,2,3,1,22,1,2,3,1,6,1,2,43,1,2,3,1,6,1,2,11,1,2,3, %T A319952 1,86,1,2,3,1,6,1,2,11,1,2,3,1,22,1,2,3,1,6,1,2,171,1,2,3,1,6,1,2,11, %U A319952 1,2,3,1,22,1,2,3,1,6,1 %N A319952 Let M = A022342(n) be the n-th number whose Zeckendorf representation is even; then a(n) = A129761(M). %C A319952 The Zeckendorf representations of numbers are given in A014417. The even ones are specified by A022342. %C A319952 The offset here is 2 (because A129761 should really have had offset 1 not 0). %F A319952 If the Zeckendorf representation of M ends with exactly k zeros, ...10^k, then a(n) = ceiling(2^k/3). %p A319952 with(combinat): F:=fibonacci: %p A319952 A130234 := proc(n) %p A319952 local i; %p A319952 for i from 0 do %p A319952 if F(i) >= n then %p A319952 return i; %p A319952 end if; %p A319952 end do: %p A319952 end proc: %p A319952 A014417 := proc(n) %p A319952 local nshi, Z, i ; %p A319952 if n <= 1 then %p A319952 return n; %p A319952 end if; %p A319952 nshi := n ; %p A319952 Z := [] ; %p A319952 for i from A130234(n) to 2 by -1 do %p A319952 if nshi >= F(i) and nshi > 0 then %p A319952 Z := [1, op(Z)] ; %p A319952 nshi := nshi-F(i) ; %p A319952 else %p A319952 Z := [0, op(Z)] ; %p A319952 end if; %p A319952 end do: %p A319952 add( op(i, Z)*10^(i-1), i=1..nops(Z)) ; %p A319952 end proc: %p A319952 A072649:= proc(n) local j; global F; for j from ilog[(1+sqrt(5))/2](n) %p A319952 while F(j+1)<=n do od; (j-1); end proc: %p A319952 A003714 := proc(n) global F; option remember; if(n < 3) then RETURN(n); else RETURN((2^(A072649(n)-1))+A003714(n-F(1+A072649(n)))); fi; end proc: %p A319952 A129761 := n -> A003714(n+1)-A003714(n): %p A319952 a:=[]; %p A319952 for n from 1 to 120 do %p A319952 if (A014417(n) mod 2) = 0 then a:=[op(a), A129761(n-1)]; fi; %p A319952 od; %p A319952 a; %Y A319952 Cf. A003714, A014417, A022342, A072649, A129761, A130234. %K A319952 nonn %O A319952 2,2 %A A319952 _Jeffrey Shallit_ and _N. J. A. Sloane_, Oct 03 2018