A319968 a(n) = A003145(A003145(n)).
6, 19, 30, 43, 50, 63, 74, 87, 100, 111, 124, 131, 144, 155, 168, 179, 192, 199, 212, 223, 236, 249, 260, 273, 280, 293, 304, 317, 324, 337, 348, 361, 374, 385, 398, 405, 418, 429, 442, 453, 466, 473, 486, 497, 510, 523, 534, 547, 554, 567, 578, 591, 604, 615, 628, 635, 648, 659, 672, 683, 696, 703, 716, 727, 740, 753
Offset: 1
Examples
From _Wolfdieter Lang_, Oct 19 2018: (Start) The TriWord A080843 starts: 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, ... (offset 0) The trisection of the B-numbers A278039 (indices for 0 in TriWord) begins: n : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... B0: 6 19 30 43 50 63 74 87 100 111 124 131 144 155 168 179 192 ... B1: 0 4 7 11 13 17 20 24 28 31 35 37 41 44 48 51 55 ... B2: 2 9 15 22 26 33 39 46 53 59 66 70 77 83 90 96 103 ... ------------------------------------------------------------------------------------ (End)
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Elena Barcucci, Luc Belanger and Srecko Brlek, On tribonacci sequences, Fib. Q., 42 (2004), 314-320. Compare page 318.
- L. Carlitz, R. Scoville and V. E. Hoggatt, Jr., Fibonacci representations of higher order, Fib. Quart., 10 (1972), 43-69, Theorem 13.
- Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent, arXiv preprint arXiv:1810.09787 [math.NT], 2018.
Crossrefs
Formula
a(n) = B0(n-1) = 2*A003146(n) - (n+1) = 2*A278041(n-1) - (n-1) = A278040(A278040(n-1)) + 1, for n >= 1. For B0 see a comment above and the example. - Wolfdieter Lang, Oct 19 2018
a(n+1) = B(C(n)) = B(C(n) + 1) - 1 = 2*(A(n) + B(n)) + n + 4, for n >= 0, where B = A278039, C = A278041 and A = A278040. For a proof see the W. Lang link in A278040, Proposition 9, eq. (53). - Wolfdieter Lang, Dec 13 2018
a(n) = 2*(A003144(n) + A003145(n)) + n - 1, n >= 1. [Rewriting a formula of the precedimg entry]. - Wolfdieter Lang, Apr 11 2019
Extensions
More terms from Joerg Arndt, Oct 15 2018
Comments