A319970 a(n) = A003146(A003144(n)).
4, 17, 28, 41, 48, 61, 72, 85, 98, 109, 122, 129, 142, 153, 166, 177, 190, 197, 210, 221, 234, 247, 258, 271, 278, 291, 302, 315, 322, 335, 346, 359, 372, 383, 396, 403, 416, 427, 440, 451, 464, 471, 484, 495, 508, 521, 532, 545, 552, 565, 576, 589, 602, 613
Offset: 1
Keywords
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Elena Barcucci, Luc Belanger and Srecko Brlek, On tribonacci sequences, Fib. Q., 42 (2004), 314-320. Compare page 318.
- L. Carlitz, R. Scoville and V. E. Hoggatt, Jr., Fibonacci representations of higher order, Fib. Quart., 10 (1972), 43-69, Theorem 13.
- Y.-K. Huang, Z.-Y. Wen, Kernel words and gap sequence of the Tribonacci sequence, Acta Mathematica Scientia (Series B). 36.1 (2016) 173-194.
Formula
a(n) = 2*(A003144(n) + A003145(n)) + n - 3 = 2*(A278040(n-1) + A278039(n-1)) + n + 1, n >= 1. For a proof see the W. Lang link in A278040, Proposition 9, eq. (55). Wolfdieter Lang, Apr 11 2019
a(1) = 4, a(n+1) = 4 + Sum_{k=1..n} d(k), where d is the tribonacci sequence on the alphabet {13,11,7}. - Michel Dekking, Oct 04 2019
Extensions
More terms from Rémy Sigrist, Oct 16 2018
Comments