A319980 Coordination sequence for (9^3, 3.9^2) net with respect to a vertex of type 3.9^2.
1, 3, 4, 8, 12, 11, 18, 19, 18, 28, 26, 25, 38, 33, 32, 48, 40, 39, 58, 47, 46, 68, 54, 53, 78, 61, 60, 88, 68, 67, 98, 75, 74, 108, 82, 81, 118, 89, 88, 128, 96, 95, 138, 103, 102, 148, 110, 109, 158, 117, 116, 168, 124, 123, 178, 131, 130, 188, 138, 137, 198, 145, 144, 208, 152, 151
Offset: 0
References
- Eon, Jean-Guillaume. "Geometrical relationships between nets mapped on isomorphic quotient graphs: examples." Journal of Solid State Chemistry 138.1 (1998): 55-65. See Fig. 1.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000
- Chaim Goodman-Strauss and N. J. A. Sloane, A Coloring Book Approach to Finding Coordination Sequences, Acta Cryst. A75 (2019), 121-134, also on NJAS's home page. Also arXiv:1803.08530.
- Jean-Guillaume Eon, Algebraic determination of generating functions for coordination sequences in crystal structures, Acta Cryst. A58 (2002), 47-53. See Section 8.
- N. J. A. Sloane, A portion of the (9^3, 3.9^2) net
- N. J. A. Sloane, Trunks and branches structure used to find the coordination sequence (Blue = trunks, red = branches, green = twigs. The two thick red lines are the special branches.)
- Index entries for linear recurrences with constant coefficients, signature (0,0,2,0,0,-1).
Crossrefs
Cf. A066393.
Programs
-
Maple
A319980 := proc(n) local t1,t2,t3,k,r; t1:=[1,3,4,8,12,11,18,19]; t2:=[20,14,14,20,14,14]; t3:=[-2,5,4,8,12,11]; if n <= 7 then t1[n+1] else k:=floor(n/6); r:=n-6*k; t2[r+1]*k+t3[r+1]; fi; end; [seq(A319980(n),n=0..128)];
-
Mathematica
Join[{1, 3}, LinearRecurrence[{0, 0, 2, 0, 0, -1}, {4, 8, 12, 11, 18, 19}, 64]] (* Jean-François Alcover, Feb 07 2019 *)
Formula
G.f.: (1 + 3*x + 4*x^2 + 6*x^3 + 6*x^4 + 3*x^5 + 3*x^6 - 2*x^7)/(1 - x^3)^2.
Comments