cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320000 Square array A(n, k) read by descending antidiagonals: A(1, 1) = 2, A(1, k) = 1 for k > 1, and for n > 1, A(n, k) = Sum_{d|n, d>=k} A010051(1+d)*[Sum_{i=0..valuation(n,1+d)} A((n/d)/((1+d)^i), 1+d)].

This page as a plain text file.
%I A320000 #17 Dec 03 2018 18:29:14
%S A320000 2,1,3,1,1,0,1,0,0,4,1,0,0,1,0,1,0,0,1,0,4,1,0,0,1,0,2,0,1,0,0,0,0,1,
%T A320000 0,5,1,0,0,0,0,1,0,1,0,1,0,0,0,0,1,0,0,0,2,1,0,0,0,0,1,0,0,0,1,0,1,0,
%U A320000 0,0,0,0,0,0,0,1,0,6,1,0,0,0,0,0,0,0,0,1,0,2,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0
%N A320000 Square array A(n, k) read by descending antidiagonals: A(1, 1) = 2, A(1, k) = 1 for k > 1, and for n > 1, A(n, k) = Sum_{d|n, d>=k} A010051(1+d)*[Sum_{i=0..valuation(n,1+d)} A((n/d)/((1+d)^i), 1+d)].
%C A320000 This square array gives the values obtained from the recursive PARI-program that _M. F. Hasler_ has provided Oct 05 2009 for A014197, in its two-argument form.
%H A320000 Antti Karttunen, <a href="/A320000/b320000.txt">Table of n, a(n) for n = 1..10585; the first 145 antidiagonals of the array</a>
%e A320000 Array begins as:
%e A320000 n  | k=1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16, ...
%e A320000 ---+------------------------------------------------
%e A320000 1  |   2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
%e A320000 2  |   3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
%e A320000 3  |   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
%e A320000 4  |   4, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
%e A320000 5  |   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
%e A320000 6  |   4, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
%e A320000 7  |   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
%e A320000 8  |   5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
%e A320000 9  |   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
%e A320000 10 |   2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, ...
%e A320000 11 |   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
%e A320000 12 |   6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, ...
%e A320000 13 |   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
%e A320000 14 |   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
%e A320000 15 |   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
%e A320000 16 |   6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
%o A320000 (PARI)
%o A320000 up_to = 120;
%o A320000 A320000sq(n, k) = if(1==n, if(1==k,2,1), sumdiv(n, d, if(d>=k && isprime(d+1), my(p=d+1, q=n/d); sum(i=0, valuation(n, p), A320000sq(q/(p^i), p))))); \\ After _M. F. Hasler_'s code in A014197
%o A320000 A320000list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A320000sq(col,(a-(col-1))))); (v); };
%o A320000 v320000 = A320000list(up_to);
%o A320000 A320000(n) = v320000[n];
%Y A320000 Cf. A014197 (column 1).
%Y A320000 Cf. A000010, A322310.
%K A320000 nonn,tabl
%O A320000 1,1
%A A320000 _Antti Karttunen_, Dec 03 2018