cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320014 Filter sequence combining the binary expansions of proper divisors of n, grouped by their residue classes mod 3.

This page as a plain text file.
%I A320014 #22 Jan 19 2019 04:15:43
%S A320014 1,2,2,3,2,4,2,5,6,7,2,8,2,9,10,11,2,12,2,13,14,15,2,16,17,18,19,20,2,
%T A320014 21,2,22,23,24,25,26,2,27,28,29,2,30,2,31,32,33,2,34,35,36,37,38,2,39,
%U A320014 40,41,42,43,2,44,2,45,46,47,48,49,2,50,51,52,2,53,2,54,55,56,57,58,2,59,60,61,2,62,63,64,65,66,2,67,68,69,70,71,72,73,2,74,75
%N A320014 Filter sequence combining the binary expansions of proper divisors of n, grouped by their residue classes mod 3.
%C A320014 Restricted growth sequence transform of triple [A319990(n), A319991(n), A319992(n)], or equally, of ordered pair [A320010(n), A320013(n)].
%C A320014 Apart from trivial cases of primes, all other duplicates in range 1 .. 65537 seem to be squarefree semiprimes of the form 3k+1, i.e., both prime factors are either of the form 3k+1 or of the form 3k+2. Question: Is there any reason that more complicated cases would not occur later?
%C A320014 For all i, j: a(i) = a(j) => A293215(i) = A293215(j).
%C A320014 Differs from A319693 first for n = 108. - _Georg Fischer_, Oct 16 2018
%H A320014 Antti Karttunen, <a href="/A320014/b320014.txt">Table of n, a(n) for n = 1..65537</a>
%e A320014 The first set of numbers that forms a nontrivial equivalence class is [295, 583, 799, 943] = [5*59, 11*53, 17*47, 23*41]. The prime factors in these are all of the form 3k+2, and when the binary expansions of the factors (like e.g., "101" for 5 and "111011" for 59 or "10111" for 23 and "101001" for 41) are overlaid, the resulting bit vector is always [1, 1, 1, 1, 1, 1^2], with the least significant bit-position containing 2 copies of 1's. Thus we have a(295) = a(583) = a(799) = a(943).
%o A320014 (PARI)
%o A320014 up_to = 65537;
%o A320014 rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
%o A320014 A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
%o A320014 A319990(n) = { my(m=1); fordiv(n,d,if((d<n)&&(0==(d%3)),m *= A019565(d))); m; };
%o A320014 A319991(n) = { my(m=1); fordiv(n,d,if((d<n)&&(1==(d%3)),m *= A019565(d))); m; };
%o A320014 A319992(n) = { my(m=1); fordiv(n,d,if((d<n)&&(2==(d%3)),m *= A019565(d))); m; };
%o A320014 v320014 = rgs_transform(vector(up_to,n,[A319990(n),A319991(n),A319992(n)]));
%o A320014 A320014(n) = v320014[n];
%Y A320014 Cf. A019565, A319990, A319991, A319992, A320010, A320011, A320012, A320013.
%Y A320014 Cf. also A293214, A293215, A293226, A300833.
%Y A320014 Differs from A305800 for the first time at n=583, where a(583) = 234, while A305800(478).
%K A320014 nonn
%O A320014 1,2
%A A320014 _Antti Karttunen_, Oct 03 2018