cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320019 Coefficients of polynomials related to the number of divisors, triangle read by rows, T(n,k) for 0 <= k <= n.

This page as a plain text file.
%I A320019 #35 Jul 27 2024 09:40:27
%S A320019 1,0,1,0,2,1,0,2,4,1,0,3,8,6,1,0,2,14,18,8,1,0,4,20,41,32,10,1,0,2,28,
%T A320019 78,92,50,12,1,0,4,37,132,216,175,72,14,1,0,3,44,209,440,490,298,98,
%U A320019 16,1,0,4,58,306,814,1172,972,469,128,18,1
%N A320019 Coefficients of polynomials related to the number of divisors, triangle read by rows, T(n,k) for 0 <= k <= n.
%C A320019 Column k is the k-fold self-convolution of tau (A000005). - _Alois P. Heinz_, Feb 01 2021
%H A320019 Alois P. Heinz, <a href="/A320019/b320019.txt">Rows n = 0..200, flattened</a>
%F A320019 The polynomials are defined by recurrence: p(0,x) = 1 and for n > 0 by
%F A320019 p(n, x) = x*Sum_{k=0..n-1} tau(n-k)*p(k, x).
%F A320019 Sigma[k](n) computes the sum of the k-th power of positive divisors of n. The recurrence applied with k = 0 gives this triangle, with k = 1 gives A319083.
%F A320019 T(n,k) = [x^n] (Sum_{j>=1} tau(j)*x^j)^k. - _Alois P. Heinz_, Feb 14 2021
%e A320019 Triangle starts:
%e A320019 [0] 1
%e A320019 [1] 0, 1
%e A320019 [2] 0, 2,  1
%e A320019 [3] 0, 2,  4,   1
%e A320019 [4] 0, 3,  8,   6,   1
%e A320019 [5] 0, 2, 14,  18,   8,   1
%e A320019 [6] 0, 4, 20,  41,  32,  10,   1
%e A320019 [7] 0, 2, 28,  78,  92,  50,  12,  1
%e A320019 [8] 0, 4, 37, 132, 216, 175,  72, 14,  1
%e A320019 [9] 0, 3, 44, 209, 440, 490, 298, 98, 16, 1
%p A320019 P := proc(n, x) option remember; if n = 0 then 1 else
%p A320019 x*add(numtheory:-tau(n-k)*P(k,x), k=0..n-1) fi end:
%p A320019 Trow := n -> seq(coeff(P(n, x), x, k), k=0..n):
%p A320019 seq(lprint([n], Trow(n)), n=0..9);
%p A320019 # second Maple program:
%p A320019 T:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
%p A320019       `if`(k=1, `if`(n=0, 0, numtheory[tau](n)), (q->
%p A320019        add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
%p A320019     end:
%p A320019 seq(seq(T(n, k), k=0..n), n=0..12);  # _Alois P. Heinz_, Feb 01 2021
%p A320019 # Uses function PMatrix from A357368.
%p A320019 PMatrix(10, NumberTheory:-tau); # _Peter Luschny_, Oct 19 2022
%t A320019 T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0],
%t A320019      If[k == 1, If[n == 0, 0, DivisorSigma[0, n]],
%t A320019      With[{q = Quotient[k, 2]}, Sum[T[j, q]*T[n-j, k-q], {j, 0, n}]]]];
%t A320019 Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Feb 11 2021, after _Alois P. Heinz_ *)
%Y A320019 Columns k=0-4 give: A000007, A000005, A055507, A191829, A375002.
%Y A320019 Row sums are A129921.
%Y A320019 T(2n,n) gives A340992.
%Y A320019 Cf. A319083.
%K A320019 nonn,tabl
%O A320019 0,5
%A A320019 _Peter Luschny_, Oct 03 2018