cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320028 a(n) is the first prime encountered when running the Collatz algorithm (halving and tripling steps) on the number n.

This page as a plain text file.
%I A320028 #39 Jun 14 2022 07:08:25
%S A320028 2,3,2,5,3,7,2,7,5,11,3,13,7,23,2,17,7,19,5,2,11,23,3,19,13,41,7,29,
%T A320028 23,31,2,19,17,53,7,37,19,59,5,41,2,43,11,17,23,47,3,37,19,29,13,53,
%U A320028 41,83,7,43,29,59,23,61,31,137,2,37,19,67,17,13,53,71,7,73,37,113,19,29,59,79,5,61,41,83,2,2,43,131
%N A320028 a(n) is the first prime encountered when running the Collatz algorithm (halving and tripling steps) on the number n.
%C A320028 A modified version of the halving and tripling Collatz algorithm, which stops as soon as the starting number becomes a prime (instead of stopping when the starting number reaches 1).
%C A320028 The plot of this sequence "completes" or "fills" the lower (empty) part of plot of A270570 and evolves in a similar fashion.
%H A320028 Alessandro Polcini, <a href="/A320028/b320028.txt">Table of n, a(n) for n = 2..10000</a> (a(2024) corrected by Michel Marcus, Jun 14 2022)
%H A320028 <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>
%F A320028 a(n) <= A087272(n). - _Rémy Sigrist_, Oct 08 2018
%e A320028 a(4) is 2 because 4/2 = 2 and 2 is prime.
%e A320028 a(6) is 3 because 6/2 = 3 and 3 is prime.
%e A320028 a(15) is 23 because 15*3 + 1 = 46; 46/2 = 23 and 23 is prime.
%e A320028 a(18) is 7 because 18/2 = 9; 9*3 + 1 = 28; 28/2 = 14; 14/2 = 7 and 7 is prime.
%t A320028 Array[NestWhile[If[EvenQ@ #, #/2, 3 # + 1] &, #, ! PrimeQ@ # &] &, 86, 2] (* _Michael De Vlieger_, Nov 07 2018 *)
%o A320028 (Java) int collatzPrime(int i) {
%o A320028     while(!BigInteger.valueOf(i).isProbablePrime(10) && i > 1) {
%o A320028         if(i % 2 == 0)
%o A320028             i /= 2;
%o A320028         else
%o A320028             i = 3 * i + 1;
%o A320028     }
%o A320028     return i;
%o A320028 }
%o A320028 (PARI) a(n) = {while (!isprime(n), if (n % 2, n = 3*n+1, n = n/2);); n;} \\ _Michel Marcus_, Oct 28 2018
%Y A320028 Cf. A087272, A270570.
%K A320028 nonn
%O A320028 2,1
%A A320028 _Alessandro Polcini_, Oct 03 2018