cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320040 Consider the Cantor matrix of rational numbers. This sequence reads the numerator, then the denominator as one moves through the matrix along alternate up and down antidiagonals.

This page as a plain text file.
%I A320040 #23 Nov 09 2018 20:46:48
%S A320040 1,1,1,2,2,1,3,1,2,2,1,3,1,4,2,3,3,2,4,1,5,1,4,2,3,3,2,4,1,5,1,6,2,5,
%T A320040 3,4,4,3,5,2,6,1,7,1,6,2,5,3,4,4,3,5,2,6,1,7,1,8,2,7,3,6,4,5,5,4,6,3,
%U A320040 7,2,8,1,9,1,8,2,7,3,6,4,5,5,4,6,3,7,2,8,1,9
%N A320040 Consider the Cantor matrix of rational numbers. This sequence reads the numerator, then the denominator as one moves through the matrix along alternate up and down antidiagonals.
%C A320040 This is analogous to reading the rows of a triangle in boustrophedon order.
%C A320040 The antidiagonals are in a certain sense palindromic.
%H A320040 H. Vic Damnon, <a href="http://www.gauge-institute.org/zigzag/cantorzigzagP.pdf">Rationals Countability and Cantor's Proof.</a>
%e A320040 The Cantor Matrix begins:
%e A320040 =========================================================================
%e A320040 n\d|   1    2    3    4    5    6    7    8    9    10    11    12    13
%e A320040 ---|---------------------------------------------------------------------
%e A320040 1  |  1/1  1/2  1/3  1/4  1/5  1/6  1/7  1/8  1/9  1/10  1/11  1/12  1/13
%e A320040 2  |  2/1  2/2  2/3  2/4  2/5  2/6  2/7  2/8  2/9  2/10  2/11  2/12  2/13
%e A320040 3  |  3/1  3/2  3/3  3/4  3/5  3/6  3/7  3/8  3/9  3/10  3/11  3/12  3/13
%e A320040 4  |  4/1  4/2  4/3  4/4  4/5  4/6  4/7  4/8  4/9  4/10  4/11  4/12  4/13
%e A320040 5  |  5/1  5/2  5/3  5/4  5/5  5/6  5/7  5/8  5/9  5/10  5/11  5/12  5/13
%e A320040 6  |  6/1  6/2  6/3  6/4  6/5  6/6  6/7  6/8  6/9  6/10  6/11  6/12  6/13
%e A320040 7  |  7/1  7/2  7/3  7/4  7/5  7/6  7/7  7/8  7/9  7/10  7/11  7/12  7/13
%e A320040 8  |  8/1  8/2  8/3  8/4  8/5  8/6  8/7  8/8  8/9  8/10  8/11  8/12  8/13
%e A320040 9  |  9/1  9/2  9/3  9/4  9/5  9/6  9/7  9/8  9/9  9/10  9/11  9/12  9/13
%e A320040 10 | 10/1 10/2 10/3 10/4 10/5 10/6 10/7 10/8 10/9 10/10 10/11 10/12 10/13
%e A320040 11 | 11/1 11/2 11/3 11/4 11/5 11/6 11/7 11/8 11/9 11/10 11/11 11/12 11/13
%e A320040 12 | 12/1 12/2 12/3 12/4 12/5 12/6 12/7 12/8 12/9 12/10 12/11 12/12 12/13
%e A320040 13 | 13/1 13/2 13/3 13/4 13/5 13/6 13/7 13/8 13/9 13/10 13/11 13/12 13/13
%e A320040 ...
%t A320040 (* to read the Cantor Matrix *) Table[{n, d}, {n, 13}, {d, 13}] // Grid
%Y A320040 Cf. A020652, A020653.
%K A320040 nonn
%O A320040 1,4
%A A320040 _Robert G. Wilson v_, Oct 03 2018