This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320040 #23 Nov 09 2018 20:46:48 %S A320040 1,1,1,2,2,1,3,1,2,2,1,3,1,4,2,3,3,2,4,1,5,1,4,2,3,3,2,4,1,5,1,6,2,5, %T A320040 3,4,4,3,5,2,6,1,7,1,6,2,5,3,4,4,3,5,2,6,1,7,1,8,2,7,3,6,4,5,5,4,6,3, %U A320040 7,2,8,1,9,1,8,2,7,3,6,4,5,5,4,6,3,7,2,8,1,9 %N A320040 Consider the Cantor matrix of rational numbers. This sequence reads the numerator, then the denominator as one moves through the matrix along alternate up and down antidiagonals. %C A320040 This is analogous to reading the rows of a triangle in boustrophedon order. %C A320040 The antidiagonals are in a certain sense palindromic. %H A320040 H. Vic Damnon, <a href="http://www.gauge-institute.org/zigzag/cantorzigzagP.pdf">Rationals Countability and Cantor's Proof.</a> %e A320040 The Cantor Matrix begins: %e A320040 ========================================================================= %e A320040 n\d| 1 2 3 4 5 6 7 8 9 10 11 12 13 %e A320040 ---|--------------------------------------------------------------------- %e A320040 1 | 1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 %e A320040 2 | 2/1 2/2 2/3 2/4 2/5 2/6 2/7 2/8 2/9 2/10 2/11 2/12 2/13 %e A320040 3 | 3/1 3/2 3/3 3/4 3/5 3/6 3/7 3/8 3/9 3/10 3/11 3/12 3/13 %e A320040 4 | 4/1 4/2 4/3 4/4 4/5 4/6 4/7 4/8 4/9 4/10 4/11 4/12 4/13 %e A320040 5 | 5/1 5/2 5/3 5/4 5/5 5/6 5/7 5/8 5/9 5/10 5/11 5/12 5/13 %e A320040 6 | 6/1 6/2 6/3 6/4 6/5 6/6 6/7 6/8 6/9 6/10 6/11 6/12 6/13 %e A320040 7 | 7/1 7/2 7/3 7/4 7/5 7/6 7/7 7/8 7/9 7/10 7/11 7/12 7/13 %e A320040 8 | 8/1 8/2 8/3 8/4 8/5 8/6 8/7 8/8 8/9 8/10 8/11 8/12 8/13 %e A320040 9 | 9/1 9/2 9/3 9/4 9/5 9/6 9/7 9/8 9/9 9/10 9/11 9/12 9/13 %e A320040 10 | 10/1 10/2 10/3 10/4 10/5 10/6 10/7 10/8 10/9 10/10 10/11 10/12 10/13 %e A320040 11 | 11/1 11/2 11/3 11/4 11/5 11/6 11/7 11/8 11/9 11/10 11/11 11/12 11/13 %e A320040 12 | 12/1 12/2 12/3 12/4 12/5 12/6 12/7 12/8 12/9 12/10 12/11 12/12 12/13 %e A320040 13 | 13/1 13/2 13/3 13/4 13/5 13/6 13/7 13/8 13/9 13/10 13/11 13/12 13/13 %e A320040 ... %t A320040 (* to read the Cantor Matrix *) Table[{n, d}, {n, 13}, {d, 13}] // Grid %Y A320040 Cf. A020652, A020653. %K A320040 nonn %O A320040 1,4 %A A320040 _Robert G. Wilson v_, Oct 03 2018