This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320043 #43 Sep 08 2022 08:46:23 %S A320043 1,6,13,50,37,196,189,384,351,1210,601,2366,1471,2156,2941,6936,3277, %T A320043 10830,5563,9022,9681,23276,9897,26300,19267,30030,23043,58870,21087, %U A320043 76880,46717,59296,57801,83546,50281,156066,90973,117968,90539,235340,86179,284746 %N A320043 Row sums of the triangle A322550. %C A320043 Conjecture: a(n) is not a perfect square except for n = 1, 6 and 96. %H A320043 Stefano Spezia, <a href="/A320043/b320043.txt">Table of n, a(n) for n = 1..10000</a> %F A320043 a(n) = Sum_{k=1..n} (n + 1 - k)^2*k/gcd(n + 1 - k, k)^3. %F A320043 a(n) = Sum_{k=1..n} A000290(n + 1 - k)*A000027(k)/A000578(A050873(n + 1 - k, k)). %p A320043 a := n -> sum((n+1-k)^2*k/gcd(n+1-k, k)^3, k = 1 .. n): seq(a(n), n = 1 .. 50); %t A320043 a[n_]:=Sum[(n+1-k)^2*k/GCD[n+1-k,k]^3, {k, 1, n}]; Array[a, 50] %o A320043 (GAP) List([1..50], n->Sum([1..n], k->(n+1-k)^2*k/GcdInt(n+1-k,k)^3)); %o A320043 (Magma) [(&+[(n+1-k)^2*k/Gcd(n+1-k,k)^3: k in [1..n]]): n in [1..50]]; %o A320043 (Maxima) a(n):=sum((n+1-k)^2*k/gcd(n+1-k,k)^3, k, 1, n)$ makelist(a(n), n, 1, 50); %o A320043 (PARI) %o A320043 a(n) = sum(k=1, n, (n+1-k)^2*k/gcd(n+1-k,k)^3); %o A320043 vector(50, n, a(n)) %Y A320043 Cf. A000027, A000290, A000578, A050873, A322550. %K A320043 nonn %O A320043 1,2 %A A320043 _Stefano Spezia_, Dec 16 2018