This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320049 #16 Feb 16 2025 08:33:56 %S A320049 1,-6,27,-98,309,-882,2330,-5784,13644,-30826,67107,-141444,289746, %T A320049 -578646,1129527,-2159774,4052721,-7474806,13569463,-24274716, %U A320049 42838245,-74644794,128533884,-218881098,368859591,-615513678,1017596115,-1667593666,2710062756,-4369417452 %N A320049 Expansion of (psi(x) / phi(x))^6 in powers of x where phi(), psi() are Ramanujan theta functions. %H A320049 Seiichi Manyama, <a href="/A320049/b320049.txt">Table of n, a(n) for n = 0..10000</a> %H A320049 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a> %F A320049 Convolution inverse of A029843. %F A320049 Expansion of q^(-3/4) * (eta(q) * eta(q^4)^2 / eta(q^2)^3)^6 in powers of q. %F A320049 a(n) ~ (-1)^n * 3^(1/4) * exp(Pi*sqrt(3*n)) / (128*sqrt(2)*n^(3/4)). - _Vaclav Kotesovec_, Oct 06 2018 %t A320049 nmax = 40; CoefficientList[Series[Product[((1-x^k) * (1-x^(4*k))^2 / (1-x^(2*k))^3)^6, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Oct 06 2018 *) %Y A320049 (psi(x) / phi(x))^b: A083365 (b=1), A079006 (b=2), A187053 (b=3), A001938 (b=4), A195861 (b=5), this sequence (b=6), A320050 (b=7). %Y A320049 Cf. A029843. %K A320049 sign %O A320049 0,2 %A A320049 _Seiichi Manyama_, Oct 04 2018