This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320052 #8 Oct 05 2018 11:11:55 %S A320052 1,0,1,1,1,2,3,3,4,4,6,8,8 %N A320052 Number of product-sum knapsack partitions of n. Number of integer partitions y of n such that every product of sums of the parts of a multiset partition of any submultiset of y is distinct. %e A320052 The sequence of product-sum knapsack partitions begins: %e A320052 0: () %e A320052 1: %e A320052 2: (2) %e A320052 3: (3) %e A320052 4: (4) %e A320052 5: (5) (3,2) %e A320052 6: (6) (4,2) (3,3) %e A320052 7: (7) (5,2) (4,3) %e A320052 8: (8) (6,2) (5,3) (4,4) %e A320052 9: (9) (7,2) (6,3) (5,4) %e A320052 10: (10) (8,2) (7,3) (6,4) (5,5) (4,3,3) %e A320052 11: (11) (9,2) (8,3) (7,4) (6,5) (5,4,2) (5,3,3) (4,4,3) %e A320052 12: (12) (10,2) (9,3) (8,4) (7,5) (7,3,2) (6,6) (4,4,4) %e A320052 A complete list of all products of sums of multiset partitions of submultisets of (4,3,3) is: %e A320052 () = 1 %e A320052 (3) = 3 %e A320052 (4) = 4 %e A320052 (3+3) = 6 %e A320052 (3+4) = 7 %e A320052 (3+3+4) = 10 %e A320052 (3)*(3) = 9 %e A320052 (3)*(4) = 12 %e A320052 (3)*(3+4) = 21 %e A320052 (4)*(3+3) = 24 %e A320052 (3)*(3)*(4) = 36 %e A320052 These are all distinct, so (4,3,3) is a product-sum knapsack partition of 10. %t A320052 sps[{}]:={{}}; %t A320052 sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A320052 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A320052 rrsuks[n_]:=Select[IntegerPartitions[n],Function[q,UnsameQ@@Apply[Times,Apply[Plus,Union@@mps/@Union[Subsets[q]],{2}],{1}]]]; %t A320052 Table[Length[rrsuks[n]],{n,12}] %Y A320052 Cf. A001970, A066739, A108917, A275972, A292886, A316313, A318949, A319318, A319320, A319910, A319913. %Y A320052 Cf. A267597, A320053, A320054, A320055, A320056, A320057, A320058. %K A320052 nonn,more %O A320052 0,6 %A A320052 _Gus Wiseman_, Oct 04 2018