This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320053 #9 Oct 05 2018 11:12:03 %S A320053 1,1,2,3,2,3,4,5,6,8,9,12,14 %N A320053 Number of spanning sum-product knapsack partitions of n. Number of integer partitions y of n such that every sum of products of the parts of a multiset partition of y is distinct. %e A320053 The sequence of spanning sum-product knapsack partitions begins: %e A320053 0: () %e A320053 1: (1) %e A320053 2: (2) (1,1) %e A320053 3: (3) (2,1) (1,1,1) %e A320053 4: (4) (3,1) %e A320053 5: (5) (4,1) (3,2) %e A320053 6: (6) (5,1) (4,2) (3,3) %e A320053 7: (7) (6,1) (5,2) (4,3) (3,3,1) %e A320053 8: (8) (7,1) (6,2) (5,3) (4,4) (3,3,2) %e A320053 9: (9) (8,1) (7,2) (6,3) (5,4) (4,4,1) (4,3,2) (3,3,3) %e A320053 A complete list of all sums of products covering the parts of (3,3,3,2) is: %e A320053 (2*3*3*3) = 54 %e A320053 (2)+(3*3*3) = 29 %e A320053 (3)+(2*3*3) = 21 %e A320053 (2*3)+(3*3) = 15 %e A320053 (2)+(3)+(3*3) = 14 %e A320053 (3)+(3)+(2*3) = 12 %e A320053 (2)+(3)+(3)+(3) = 11 %e A320053 These are all distinct, so (3,3,3,2) is a spanning sum-product knapsack partition of 11. %e A320053 An example of a spanning sum-product knapsack partition that is not a spanning product-sum knapsack partition is (5,4,3,2). %t A320053 sps[{}]:={{}}; %t A320053 sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A320053 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A320053 rtuks[n_]:=Select[IntegerPartitions[n],Function[q,UnsameQ@@Apply[Plus,Apply[Times,mps[q],{2}],{1}]]]; %t A320053 Table[Length[rtuks[n]],{n,8}] %Y A320053 Cf. A001970, A066739, A108917, A275972, A292886, A316313, A318949, A319318, A319320, A319910, A319913. %Y A320053 Cf. A267597, A320052, A320054, A320055, A320056, A320057, A320058. %K A320053 nonn,more %O A320053 0,3 %A A320053 _Gus Wiseman_, Oct 04 2018