This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320055 #7 Oct 05 2018 18:47:05 %S A320055 1,2,3,5,7,11,13,15,17,19,21,23,25,29,31,33,35,37,39,41,43,47,49,51, %T A320055 53,55,57,59,61,65,67,69,71,73,77,79,83,85,87,89,91,93,95,97,101,103, %U A320055 107,109,111,113,115,119,121,123,127,129,131,133,137,139,141,143 %N A320055 Heinz numbers of sum-product knapsack partitions. %C A320055 A sum-product knapsack partition is a finite multiset m of positive integers such that every sum of products of parts of any multiset partition of any submultiset of m is distinct. %C A320055 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %C A320055 Differs from A320056 in having 2, 845, ... and lacking 245, 455, 847, .... %e A320055 A complete list of sums of products of multiset partitions of submultisets of the partition (6,6,3) is: %e A320055 0 = 0 %e A320055 (3) = 3 %e A320055 (6) = 6 %e A320055 (3*6) = 18 %e A320055 (6*6) = 36 %e A320055 (3*6*6) = 108 %e A320055 (3)+(6) = 9 %e A320055 (3)+(6*6) = 39 %e A320055 (6)+(6) = 12 %e A320055 (6)+(3*6) = 24 %e A320055 (3)+(6)+(6) = 15 %e A320055 These are all distinct, and the Heinz number of (6,6,3) is 845, so 845 belongs to the sequence. %t A320055 multWt[n_]:=If[n==1,1,Times@@Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]^k]]; %t A320055 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A320055 Select[Range[100],UnsameQ@@Table[Plus@@multWt/@f,{f,Join@@facs/@Divisors[#]}]&] %Y A320055 Cf. A001970, A056239, A066739, A108917, A112798, A292886, A299702, A301899, A318949, A319318, A319913. %Y A320055 Cf. A267597, A320052, A320053, A320054, A320056, A320057, A320058. %K A320055 nonn %O A320055 1,2 %A A320055 _Gus Wiseman_, Oct 04 2018