A320056 Heinz numbers of product-sum knapsack partitions.
1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 107, 109, 111, 113, 115, 119, 121, 123, 127, 129, 131, 133, 137, 139, 141, 143
Offset: 1
Keywords
Examples
A complete list of products of sums of multiset partitions of submultisets of the partition (5,5,4) is: () = 1 (4) = 4 (5) = 5 (4+5) = 9 (5+5) = 10 (4+5+5) = 14 (4)*(5) = 20 (4)*(5+5) = 40 (5)*(5) = 25 (5)*(4+5) = 45 (4)*(5)*(5) = 100 These are all distinct, and the Heinz number of (5,5,4) is 847, so 847 belongs to the sequence.
Crossrefs
Programs
-
Mathematica
heinzWt[n_]:=If[n==1,0,Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Select[Range[100],UnsameQ@@Table[Times@@heinzWt/@f,{f,Join@@facs/@Divisors[#]}]&]
Comments