cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320057 Heinz numbers of spanning sum-product knapsack partitions.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 75, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98, 101, 103, 105
Offset: 1

Views

Author

Gus Wiseman, Oct 04 2018

Keywords

Comments

A spanning sum-product knapsack partition is a finite multiset m of positive integers such that every sum of products of parts of any multiset partition of m is distinct.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Differs from A320058 in having 1155, 1625, 1815, 1875, 1911, ... and lacking 20, 28, 42, 44, 52, ...

Examples

			The sequence of all spanning sum-product knapsack partitions begins: (), (1), (2), (1,1), (3), (2,1), (4), (1,1,1), (3,1), (5), (6), (4,1), (3,2), (7), (8), (4,2), (5,1), (9), (3,3), (6,1).
A complete list of sums of products of multiset partitions of the partition (5,4,3,2) is:
        (2*3*4*5) = 120
      (2)+(3*4*5) = 62
      (3)+(2*4*5) = 43
      (4)+(2*3*5) = 34
      (5)+(2*3*4) = 29
      (2*3)+(4*5) = 26
      (2*4)+(3*5) = 23
      (2*5)+(3*4) = 22
    (2)+(3)+(4*5) = 25
    (2)+(4)+(3*5) = 21
    (2)+(5)+(3*4) = 19
    (3)+(4)+(2*5) = 17
    (3)+(5)+(2*4) = 16
    (4)+(5)+(2*3) = 15
  (2)+(3)+(4)+(5) = 14
These are all distinct, and the Heinz number of (5,4,3,2) is 1155, so 1155 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    multWt[n_]:=If[n==1,1,Times@@Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]^k]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],UnsameQ@@Table[Plus@@multWt/@f,{f,facs[#]}]&]