A320057 Heinz numbers of spanning sum-product knapsack partitions.
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 75, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98, 101, 103, 105
Offset: 1
Keywords
Examples
The sequence of all spanning sum-product knapsack partitions begins: (), (1), (2), (1,1), (3), (2,1), (4), (1,1,1), (3,1), (5), (6), (4,1), (3,2), (7), (8), (4,2), (5,1), (9), (3,3), (6,1). A complete list of sums of products of multiset partitions of the partition (5,4,3,2) is: (2*3*4*5) = 120 (2)+(3*4*5) = 62 (3)+(2*4*5) = 43 (4)+(2*3*5) = 34 (5)+(2*3*4) = 29 (2*3)+(4*5) = 26 (2*4)+(3*5) = 23 (2*5)+(3*4) = 22 (2)+(3)+(4*5) = 25 (2)+(4)+(3*5) = 21 (2)+(5)+(3*4) = 19 (3)+(4)+(2*5) = 17 (3)+(5)+(2*4) = 16 (4)+(5)+(2*3) = 15 (2)+(3)+(4)+(5) = 14 These are all distinct, and the Heinz number of (5,4,3,2) is 1155, so 1155 belongs to the sequence.
Crossrefs
Programs
-
Mathematica
multWt[n_]:=If[n==1,1,Times@@Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]^k]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Select[Range[100],UnsameQ@@Table[Plus@@multWt/@f,{f,facs[#]}]&]
Comments