This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320058 #6 Oct 05 2018 18:47:27 %S A320058 1,2,3,4,5,6,7,8,10,11,13,14,15,17,19,20,21,22,23,25,26,28,29,31,33, %T A320058 34,35,37,38,39,41,42,43,44,46,47,49,50,51,52,53,55,56,57,58,59,61,62, %U A320058 65,66,67,68,69,70,71,73,74,75,76,77,78,79,82,83,85,86,87 %N A320058 Heinz numbers of spanning product-sum knapsack partitions. %C A320058 A spanning product-sum knapsack partition is a finite multiset m of positive integers such that every product of sums of parts of any multiset partition of m is distinct. %C A320058 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %C A320058 Differs from A320057 in having 20, 28, 42, 44, 52, ... and lacking 1155, 1625, 1815, 1875, 1911, .... %e A320058 The sequence of all spanning product-sum knapsack partitions begins: (), (1), (2), (1,1), (3), (2,1), (4), (1,1,1), (3,1), (5), (6), (4,1), (3,2), (7), (8), (3,1,1), (4,2), (5,1), (9), (3,3), (6,1), (4,1,1). %e A320058 A complete list of products of sums of multiset partitions of the partition (3,1,1) is: %e A320058 (1+1+3) = 5 %e A320058 (1)*(1+3) = 4 %e A320058 (3)*(1+1) = 6 %e A320058 (1)*(1)*(3) = 3 %e A320058 These are all distinct, and the Heinz number of (3,1,1) is 20, so 20 belongs to the sequence. %t A320058 heinzWt[n_]:=If[n==1,0,Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]]]; %t A320058 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A320058 Select[Range[100],UnsameQ@@Table[Times@@heinzWt/@f,{f,facs[#]}]&] %Y A320058 Cf. A001970, A056239, A066739, A108917, A112798, A292886, A299702, A301899, A318949, A319318, A319913. %Y A320058 Cf. A267597, A320052, A320053, A320054, A320055, A320056, A320057. %K A320058 nonn %O A320058 1,2 %A A320058 _Gus Wiseman_, Oct 04 2018