A320060 Least residue greater than -prime(n)/2 of the product Product_{i,j} (i^2 - (i+j)*j) modulo prime(n), where i and j run over {1,...,(prime(n)-1)/2} with i^2-(i+j)*j not divisible by prime(n).
-1, -1, -1, 1, 5, -4, -1, 1, 1, 1, -6, 1, -1, -1, -23, -1, 1, 1, 1, 27, -1, -1, 1, 22, -1, 1, 1, -1, 15, -1, 1, 37, -1, -1, 1, 28, -1, -1, 80, -1, -1, 1, -81, 14, -1, 1, 1, 1, 1, -89, -1, 1, 1, 16, 1, -1, 1, 60, 1, -1, -138, 1, 1, -25, -114, 1, 148, 1, 1, -42, -1, -1, -104, -1, 1, -1, 63, -1, -1
Offset: 2
Keywords
Examples
a(4) = -1 since prime(4) = 7 does not divide i^2-(i+j)*j for any i,j = 1,2,3, and Product_{i,j = 1,2,3} (i^2 - (i+j)*j) = -108900 == -1 (mod 7).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 2..400
- Zhi-Wei Sun, Quadratic residues and related permutations and identities, arXiv:1809.07766 [math.NT], 2018.
- Zhi-Wei Sun, On quadratic residues and quartic residues modulo primes, arXiv:1810.12102 [math.NT], 2018.
Programs
-
Mathematica
rMod[m_,n_]:=rMod[m,n]=Mod[m,n,-n/2]; a[p_]:=a[p]=rMod[Product[If[rMod[i^2-(i+j)*j,p]==0,1,i^2-(i+j)*j],{i,1,(p-1)/2},{j,1,(p-1)/2}],p]; Table[a[Prime[n]],{n,2,80}]
Comments