This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320071 #17 Dec 11 2020 03:55:04 %S A320071 1,5,35,210,1295,7735,46655,279720,1679580,10076395,60466175, %T A320071 362789070,2176782335,13060647355,78364162765,470184704640, %U A320071 2821109907455,16926657757380,101559956668415,609359729932590,3656158440016285,21936950579911675,131621703842267135 %N A320071 Number of length n primitive (=aperiodic or period n) 6-ary words which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet. %C A320071 Dirichlet convolution of mu(n) with 6^(n-1). %H A320071 Alois P. Heinz, <a href="/A320071/b320071.txt">Table of n, a(n) for n = 1..1286</a> %F A320071 a(n) = Sum_{d|n} 6^(d-1) * mu(n/d). %F A320071 a(n) = 6^(n-1) - Sum_{d<n,d|n} a(d). %F A320071 a(n) = A143325(n,6). %F A320071 a(n) = A074650(n,6) * n/6. %F A320071 a(n) = A143324(n,6) / 6. %F A320071 G.f.: Sum_{k>=1} mu(k)*x^k/(1 - 6*x^k). - _Ilya Gutkovskiy_, Oct 25 2018 %p A320071 a:= n-> add(`if`(d=n, 6^(n-1), -a(d)), d=numtheory[divisors](n)): %p A320071 seq(a(n), n=1..25); %t A320071 nmax = 20; Rest[CoefficientList[Series[Sum[MoebiusMu[k] * x^k / (1 - 6*x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Dec 11 2020 *) %Y A320071 Column k=6 of A143325. %Y A320071 First differences of A320090. %Y A320071 Cf. A008683, A074650, A143324. %K A320071 nonn %O A320071 1,2 %A A320071 _Alois P. Heinz_, Oct 05 2018