This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320072 #12 Feb 27 2019 11:53:47 %S A320072 1,6,48,336,2400,16752,117648,823200,5764752,40351200,282475248, %T A320072 1977309600,13841287200,96888892752,678223070400,4747560686400, %U A320072 33232930569600,232630508205648,1628413597910448,11398895145019200,79792266297494304,558545863800808752 %N A320072 Number of length n primitive (=aperiodic or period n) 7-ary words which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet. %C A320072 Dirichlet convolution of mu(n) with 7^(n-1). %H A320072 Alois P. Heinz, <a href="/A320072/b320072.txt">Table of n, a(n) for n = 1..1184</a> %F A320072 a(n) = Sum_{d|n} 7^(d-1) * mu(n/d). %F A320072 a(n) = 7^(n-1) - Sum_{d<n,d|n} a(d). %F A320072 a(n) = A143325(n,7). %F A320072 a(n) = A074650(n,7) * n/7. %F A320072 a(n) = A143324(n,7) / 7. %F A320072 G.f.: Sum_{k>=1} mu(k)*x^k/(1 - 7*x^k). - _Ilya Gutkovskiy_, Oct 25 2018 %p A320072 a:= n-> add(`if`(d=n, 7^(n-1), -a(d)), d=numtheory[divisors](n)): %p A320072 seq(a(n), n=1..25); %Y A320072 Column k=7 of A143325. %Y A320072 First differences of A320091. %Y A320072 Cf. A008683, A074650, A143324. %K A320072 nonn %O A320072 1,2 %A A320072 _Alois P. Heinz_, Oct 05 2018