This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A320074 #12 Mar 16 2020 06:52:01 %S A320074 1,8,80,720,6560,58960,531440,4782240,43046640,387413920,3486784400, %T A320074 31380999840,282429536480,2541865296880,22876792448320, %U A320074 205891127311680,1853020188851840,16677181656560880,150094635296999120,1350851717285570880,12157665459056397280 %N A320074 Number of length n primitive (=aperiodic or period n) 9-ary words which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet. %C A320074 Dirichlet convolution of mu(n) with 9^(n-1). %H A320074 Alois P. Heinz, <a href="/A320074/b320074.txt">Table of n, a(n) for n = 1..1048</a> %F A320074 a(n) = Sum_{d|n} 9^(d-1) * mu(n/d). %F A320074 a(n) = 9^(n-1) - Sum_{d<n,d|n} a(d). %F A320074 a(n) = A143325(n,9). %F A320074 a(n) = A074650(n,9) * n/9. %F A320074 a(n) = A143324(n,9) / 9. %F A320074 G.f.: Sum_{k>=1} mu(k)*x^k/(1 - 9*x^k). - _Ilya Gutkovskiy_, Oct 25 2018 %p A320074 a:= n-> add(`if`(d=n, 9^(n-1), -a(d)), d=numtheory[divisors](n)): %p A320074 seq(a(n), n=1..25); %Y A320074 Column k=9 of A143325. %Y A320074 First differences of A320093. %Y A320074 Cf. A008683, A074650, A143324. %K A320074 nonn %O A320074 1,2 %A A320074 _Alois P. Heinz_, Oct 05 2018